Metamath Proof Explorer


Theorem mndoissmgrpOLD

Description: Obsolete version of mndsgrp as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion mndoissmgrpOLD
|- ( G e. MndOp -> G e. SemiGrp )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( G e. ( SemiGrp i^i ExId ) <-> ( G e. SemiGrp /\ G e. ExId ) )
2 1 simplbi
 |-  ( G e. ( SemiGrp i^i ExId ) -> G e. SemiGrp )
3 df-mndo
 |-  MndOp = ( SemiGrp i^i ExId )
4 2 3 eleq2s
 |-  ( G e. MndOp -> G e. SemiGrp )