Metamath Proof Explorer


Theorem mndplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)

Ref Expression
Hypotheses mndplusf.1
|- B = ( Base ` G )
mndplusf.2
|- .+^ = ( +f ` G )
Assertion mndplusf
|- ( G e. Mnd -> .+^ : ( B X. B ) --> B )

Proof

Step Hyp Ref Expression
1 mndplusf.1
 |-  B = ( Base ` G )
2 mndplusf.2
 |-  .+^ = ( +f ` G )
3 mndmgm
 |-  ( G e. Mnd -> G e. Mgm )
4 1 2 mgmplusf
 |-  ( G e. Mgm -> .+^ : ( B X. B ) --> B )
5 3 4 syl
 |-  ( G e. Mnd -> .+^ : ( B X. B ) --> B )