Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndplusf.1 | |- B = ( Base ` G ) |
|
mndplusf.2 | |- .+^ = ( +f ` G ) |
||
Assertion | mndplusf | |- ( G e. Mnd -> .+^ : ( B X. B ) --> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndplusf.1 | |- B = ( Base ` G ) |
|
2 | mndplusf.2 | |- .+^ = ( +f ` G ) |
|
3 | mndmgm | |- ( G e. Mnd -> G e. Mgm ) |
|
4 | 1 2 | mgmplusf | |- ( G e. Mgm -> .+^ : ( B X. B ) --> B ) |
5 | 3 4 | syl | |- ( G e. Mnd -> .+^ : ( B X. B ) --> B ) |