Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mndsgrp | |- ( G e. Mnd -> G e. Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 3 | 1 2 | ismnddef | |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. ( Base ` G ) A. x e. ( Base ` G ) ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
| 4 | 3 | simplbi | |- ( G e. Mnd -> G e. Smgrp ) |