Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
Assertion | mndtcbas | |- ( ph -> E! x x e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
4 | 1 2 3 | mndtcbasval | |- ( ph -> B = { M } ) |
5 | sneq | |- ( x = M -> { x } = { M } ) |
|
6 | 5 | eqeq2d | |- ( x = M -> ( B = { x } <-> B = { M } ) ) |
7 | 2 4 6 | spcedv | |- ( ph -> E. x B = { x } ) |
8 | eusn | |- ( E! x x e. B <-> E. x B = { x } ) |
|
9 | 7 8 | sylibr | |- ( ph -> E! x x e. B ) |