Metamath Proof Explorer


Theorem mndtcbas

Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c
|- ( ph -> C = ( MndToCat ` M ) )
mndtcbas.m
|- ( ph -> M e. Mnd )
mndtcbas.b
|- ( ph -> B = ( Base ` C ) )
Assertion mndtcbas
|- ( ph -> E! x x e. B )

Proof

Step Hyp Ref Expression
1 mndtcbas.c
 |-  ( ph -> C = ( MndToCat ` M ) )
2 mndtcbas.m
 |-  ( ph -> M e. Mnd )
3 mndtcbas.b
 |-  ( ph -> B = ( Base ` C ) )
4 1 2 3 mndtcbasval
 |-  ( ph -> B = { M } )
5 sneq
 |-  ( x = M -> { x } = { M } )
6 5 eqeq2d
 |-  ( x = M -> ( B = { x } <-> B = { M } ) )
7 2 4 6 spcedv
 |-  ( ph -> E. x B = { x } )
8 eusn
 |-  ( E! x x e. B <-> E. x B = { x } )
9 7 8 sylibr
 |-  ( ph -> E! x x e. B )