Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) | |
| mndtcbas.m | |- ( ph -> M e. Mnd ) | ||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) | ||
| Assertion | mndtcbas | |- ( ph -> E! x x e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) | |
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) | |
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) | |
| 4 | 1 2 3 | mndtcbasval |  |-  ( ph -> B = { M } ) | 
| 5 | sneq |  |-  ( x = M -> { x } = { M } ) | |
| 6 | 5 | eqeq2d |  |-  ( x = M -> ( B = { x } <-> B = { M } ) ) | 
| 7 | 2 4 6 | spcedv |  |-  ( ph -> E. x B = { x } ) | 
| 8 | eusn |  |-  ( E! x x e. B <-> E. x B = { x } ) | |
| 9 | 7 8 | sylibr | |- ( ph -> E! x x e. B ) |