Step |
Hyp |
Ref |
Expression |
1 |
|
mndtcbas.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtcbas.m |
|- ( ph -> M e. Mnd ) |
3 |
|
mndtcbas.b |
|- ( ph -> B = ( Base ` C ) ) |
4 |
1 2
|
mndtcval |
|- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
5 |
4
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) |
6 |
|
snex |
|- { M } e. _V |
7 |
|
catstr |
|- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. |
8 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
9 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , { M } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } |
10 |
7 8 9
|
strfv |
|- ( { M } e. _V -> { M } = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) |
11 |
6 10
|
mp1i |
|- ( ph -> { M } = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) |
12 |
5 3 11
|
3eqtr4d |
|- ( ph -> B = { M } ) |