| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndtcbas.c |  |-  ( ph -> C = ( MndToCat ` M ) ) | 
						
							| 2 |  | mndtcbas.m |  |-  ( ph -> M e. Mnd ) | 
						
							| 3 |  | mndtcbas.b |  |-  ( ph -> B = ( Base ` C ) ) | 
						
							| 4 | 1 2 | mndtcval |  |-  ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) | 
						
							| 6 |  | snex |  |-  { M } e. _V | 
						
							| 7 |  | catstr |  |-  { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. | 
						
							| 8 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 9 |  | snsstp1 |  |-  { <. ( Base ` ndx ) , { M } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } | 
						
							| 10 | 7 8 9 | strfv |  |-  ( { M } e. _V -> { M } = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) | 
						
							| 11 | 6 10 | mp1i |  |-  ( ph -> { M } = ( Base ` { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) ) | 
						
							| 12 | 5 3 11 | 3eqtr4d |  |-  ( ph -> B = { M } ) |