Metamath Proof Explorer


Theorem mndtccat

Description: The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c
|- ( ph -> C = ( MndToCat ` M ) )
mndtccat.m
|- ( ph -> M e. Mnd )
Assertion mndtccat
|- ( ph -> C e. Cat )

Proof

Step Hyp Ref Expression
1 mndtccat.c
 |-  ( ph -> C = ( MndToCat ` M ) )
2 mndtccat.m
 |-  ( ph -> M e. Mnd )
3 1 2 mndtccatid
 |-  ( ph -> ( C e. Cat /\ ( Id ` C ) = ( y e. ( Base ` C ) |-> ( 0g ` M ) ) ) )
4 3 simpld
 |-  ( ph -> C e. Cat )