| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndtcbas.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
| 2 |
|
mndtcbas.m |
|- ( ph -> M e. Mnd ) |
| 3 |
|
mndtcbas.b |
|- ( ph -> B = ( Base ` C ) ) |
| 4 |
|
mndtchom.x |
|- ( ph -> X e. B ) |
| 5 |
|
mndtchom.y |
|- ( ph -> Y e. B ) |
| 6 |
|
mndtcco.z |
|- ( ph -> Z e. B ) |
| 7 |
|
mndtcco.o |
|- ( ph -> .x. = ( comp ` C ) ) |
| 8 |
1 2
|
mndtcval |
|- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 9 |
|
catstr |
|- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. |
| 10 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
| 11 |
|
snsstp3 |
|- { <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } |
| 12 |
|
snex |
|- { <. <. M , M , M >. , ( +g ` M ) >. } e. _V |
| 13 |
12
|
a1i |
|- ( ph -> { <. <. M , M , M >. , ( +g ` M ) >. } e. _V ) |
| 14 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 15 |
8 9 10 11 13 14
|
strfv3 |
|- ( ph -> ( comp ` C ) = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 16 |
7 15
|
eqtrd |
|- ( ph -> .x. = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 17 |
1 2 3 4
|
mndtcob |
|- ( ph -> X = M ) |
| 18 |
1 2 3 5
|
mndtcob |
|- ( ph -> Y = M ) |
| 19 |
17 18
|
opeq12d |
|- ( ph -> <. X , Y >. = <. M , M >. ) |
| 20 |
1 2 3 6
|
mndtcob |
|- ( ph -> Z = M ) |
| 21 |
16 19 20
|
oveq123d |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) ) |
| 22 |
|
df-ov |
|- ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) = ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. <. M , M >. , M >. ) |
| 23 |
|
df-ot |
|- <. M , M , M >. = <. <. M , M >. , M >. |
| 24 |
23
|
fveq2i |
|- ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. M , M , M >. ) = ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. <. M , M >. , M >. ) |
| 25 |
|
otex |
|- <. M , M , M >. e. _V |
| 26 |
|
fvex |
|- ( +g ` M ) e. _V |
| 27 |
25 26
|
fvsn |
|- ( { <. <. M , M , M >. , ( +g ` M ) >. } ` <. M , M , M >. ) = ( +g ` M ) |
| 28 |
22 24 27
|
3eqtr2i |
|- ( <. M , M >. { <. <. M , M , M >. , ( +g ` M ) >. } M ) = ( +g ` M ) |
| 29 |
21 28
|
eqtrdi |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) ) |