Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtchom.x | |- ( ph -> X e. B ) |
||
| mndtchom.y | |- ( ph -> Y e. B ) |
||
| mndtcco.z | |- ( ph -> Z e. B ) |
||
| mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
||
| mndtcco2.o2 | |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) |
||
| Assertion | mndtcco2 | |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtchom.x | |- ( ph -> X e. B ) |
|
| 5 | mndtchom.y | |- ( ph -> Y e. B ) |
|
| 6 | mndtcco.z | |- ( ph -> Z e. B ) |
|
| 7 | mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
|
| 8 | mndtcco2.o2 | |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) |
|
| 9 | 1 2 3 4 5 6 7 | mndtcco | |- ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) ) |
| 10 | 8 9 | eqtrd | |- ( ph -> .o. = ( +g ` M ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) |