Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
mndtchom.x | |- ( ph -> X e. B ) |
||
mndtchom.y | |- ( ph -> Y e. B ) |
||
mndtcco.z | |- ( ph -> Z e. B ) |
||
mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
||
mndtcco2.o2 | |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) |
||
Assertion | mndtcco2 | |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
4 | mndtchom.x | |- ( ph -> X e. B ) |
|
5 | mndtchom.y | |- ( ph -> Y e. B ) |
|
6 | mndtcco.z | |- ( ph -> Z e. B ) |
|
7 | mndtcco.o | |- ( ph -> .x. = ( comp ` C ) ) |
|
8 | mndtcco2.o2 | |- ( ph -> .o. = ( <. X , Y >. .x. Z ) ) |
|
9 | 1 2 3 4 5 6 7 | mndtcco | |- ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) ) |
10 | 8 9 | eqtrd | |- ( ph -> .o. = ( +g ` M ) ) |
11 | 10 | oveqd | |- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) ) |