Step |
Hyp |
Ref |
Expression |
1 |
|
mndtcbas.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtcbas.m |
|- ( ph -> M e. Mnd ) |
3 |
|
mndtcbas.b |
|- ( ph -> B = ( Base ` C ) ) |
4 |
|
mndtchom.x |
|- ( ph -> X e. B ) |
5 |
|
mndtchom.y |
|- ( ph -> Y e. B ) |
6 |
|
mndtchom.h |
|- ( ph -> H = ( Hom ` C ) ) |
7 |
1 2
|
mndtcval |
|- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
8 |
|
catstr |
|- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. |
9 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
10 |
|
snsstp2 |
|- { <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } |
11 |
|
snex |
|- { <. M , M , ( Base ` M ) >. } e. _V |
12 |
11
|
a1i |
|- ( ph -> { <. M , M , ( Base ` M ) >. } e. _V ) |
13 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
14 |
7 8 9 10 12 13
|
strfv3 |
|- ( ph -> ( Hom ` C ) = { <. M , M , ( Base ` M ) >. } ) |
15 |
6 14
|
eqtrd |
|- ( ph -> H = { <. M , M , ( Base ` M ) >. } ) |
16 |
1 2 3 4
|
mndtcob |
|- ( ph -> X = M ) |
17 |
1 2 3 5
|
mndtcob |
|- ( ph -> Y = M ) |
18 |
15 16 17
|
oveq123d |
|- ( ph -> ( X H Y ) = ( M { <. M , M , ( Base ` M ) >. } M ) ) |
19 |
|
df-ot |
|- <. M , M , ( Base ` M ) >. = <. <. M , M >. , ( Base ` M ) >. |
20 |
19
|
sneqi |
|- { <. M , M , ( Base ` M ) >. } = { <. <. M , M >. , ( Base ` M ) >. } |
21 |
20
|
oveqi |
|- ( M { <. M , M , ( Base ` M ) >. } M ) = ( M { <. <. M , M >. , ( Base ` M ) >. } M ) |
22 |
|
df-ov |
|- ( M { <. <. M , M >. , ( Base ` M ) >. } M ) = ( { <. <. M , M >. , ( Base ` M ) >. } ` <. M , M >. ) |
23 |
|
opex |
|- <. M , M >. e. _V |
24 |
|
fvex |
|- ( Base ` M ) e. _V |
25 |
23 24
|
fvsn |
|- ( { <. <. M , M >. , ( Base ` M ) >. } ` <. M , M >. ) = ( Base ` M ) |
26 |
21 22 25
|
3eqtri |
|- ( M { <. M , M , ( Base ` M ) >. } M ) = ( Base ` M ) |
27 |
18 26
|
eqtrdi |
|- ( ph -> ( X H Y ) = ( Base ` M ) ) |