Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
2 |
|
mndtccat.m |
|- ( ph -> M e. Mnd ) |
3 |
|
mndtcid.b |
|- ( ph -> B = ( Base ` C ) ) |
4 |
|
mndtcid.x |
|- ( ph -> X e. B ) |
5 |
|
mndtcid.i |
|- ( ph -> .1. = ( Id ` C ) ) |
6 |
1 2
|
mndtccatid |
|- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) ) |
7 |
6
|
simprd |
|- ( ph -> ( Id ` C ) = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) |
8 |
5 7
|
eqtrd |
|- ( ph -> .1. = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) |
9 |
|
eqidd |
|- ( ( ph /\ x = X ) -> ( 0g ` M ) = ( 0g ` M ) ) |
10 |
4 3
|
eleqtrd |
|- ( ph -> X e. ( Base ` C ) ) |
11 |
|
fvexd |
|- ( ph -> ( 0g ` M ) e. _V ) |
12 |
8 9 10 11
|
fvmptd |
|- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) |