Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
mndtchom.x | |- ( ph -> X e. B ) |
||
Assertion | mndtcob | |- ( ph -> X = M ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
4 | mndtchom.x | |- ( ph -> X e. B ) |
|
5 | 1 2 3 | mndtcbasval | |- ( ph -> B = { M } ) |
6 | 4 5 | eleqtrd | |- ( ph -> X e. { M } ) |
7 | elsng | |- ( X e. B -> ( X e. { M } <-> X = M ) ) |
|
8 | 4 7 | syl | |- ( ph -> ( X e. { M } <-> X = M ) ) |
9 | 6 8 | mpbid | |- ( ph -> X = M ) |