Metamath Proof Explorer


Theorem mndtcob

Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c
|- ( ph -> C = ( MndToCat ` M ) )
mndtcbas.m
|- ( ph -> M e. Mnd )
mndtcbas.b
|- ( ph -> B = ( Base ` C ) )
mndtchom.x
|- ( ph -> X e. B )
Assertion mndtcob
|- ( ph -> X = M )

Proof

Step Hyp Ref Expression
1 mndtcbas.c
 |-  ( ph -> C = ( MndToCat ` M ) )
2 mndtcbas.m
 |-  ( ph -> M e. Mnd )
3 mndtcbas.b
 |-  ( ph -> B = ( Base ` C ) )
4 mndtchom.x
 |-  ( ph -> X e. B )
5 1 2 3 mndtcbasval
 |-  ( ph -> B = { M } )
6 4 5 eleqtrd
 |-  ( ph -> X e. { M } )
7 elsng
 |-  ( X e. B -> ( X e. { M } <-> X = M ) )
8 4 7 syl
 |-  ( ph -> ( X e. { M } <-> X = M ) )
9 6 8 mpbid
 |-  ( ph -> X = M )