| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndtcbas.c |
|- ( ph -> C = ( MndToCat ` M ) ) |
| 2 |
|
mndtcbas.m |
|- ( ph -> M e. Mnd ) |
| 3 |
|
sneq |
|- ( m = M -> { m } = { M } ) |
| 4 |
3
|
opeq2d |
|- ( m = M -> <. ( Base ` ndx ) , { m } >. = <. ( Base ` ndx ) , { M } >. ) |
| 5 |
|
id |
|- ( m = M -> m = M ) |
| 6 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
| 7 |
5 5 6
|
oteq123d |
|- ( m = M -> <. m , m , ( Base ` m ) >. = <. M , M , ( Base ` M ) >. ) |
| 8 |
7
|
sneqd |
|- ( m = M -> { <. m , m , ( Base ` m ) >. } = { <. M , M , ( Base ` M ) >. } ) |
| 9 |
8
|
opeq2d |
|- ( m = M -> <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. = <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. ) |
| 10 |
5 5 5
|
oteq123d |
|- ( m = M -> <. m , m , m >. = <. M , M , M >. ) |
| 11 |
|
fveq2 |
|- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
| 12 |
10 11
|
opeq12d |
|- ( m = M -> <. <. m , m , m >. , ( +g ` m ) >. = <. <. M , M , M >. , ( +g ` M ) >. ) |
| 13 |
12
|
sneqd |
|- ( m = M -> { <. <. m , m , m >. , ( +g ` m ) >. } = { <. <. M , M , M >. , ( +g ` M ) >. } ) |
| 14 |
13
|
opeq2d |
|- ( m = M -> <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. = <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. ) |
| 15 |
4 9 14
|
tpeq123d |
|- ( m = M -> { <. ( Base ` ndx ) , { m } >. , <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. , <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. } = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 16 |
|
df-mndtc |
|- MndToCat = ( m e. Mnd |-> { <. ( Base ` ndx ) , { m } >. , <. ( Hom ` ndx ) , { <. m , m , ( Base ` m ) >. } >. , <. ( comp ` ndx ) , { <. <. m , m , m >. , ( +g ` m ) >. } >. } ) |
| 17 |
|
tpex |
|- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } e. _V |
| 18 |
15 16 17
|
fvmpt |
|- ( M e. Mnd -> ( MndToCat ` M ) = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 19 |
2 18
|
syl |
|- ( ph -> ( MndToCat ` M ) = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 20 |
1 19
|
eqtrd |
|- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |