Step |
Hyp |
Ref |
Expression |
1 |
|
mndvcl.b |
|- B = ( Base ` M ) |
2 |
|
mndvcl.p |
|- .+ = ( +g ` M ) |
3 |
|
mndvlid.z |
|- .0. = ( 0g ` M ) |
4 |
|
elmapex |
|- ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) |
5 |
4
|
simprd |
|- ( X e. ( B ^m I ) -> I e. _V ) |
6 |
5
|
adantl |
|- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> I e. _V ) |
7 |
|
elmapi |
|- ( X e. ( B ^m I ) -> X : I --> B ) |
8 |
7
|
adantl |
|- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> X : I --> B ) |
9 |
1 3
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
10 |
9
|
adantr |
|- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> .0. e. B ) |
11 |
1 2 3
|
mndrid |
|- ( ( M e. Mnd /\ x e. B ) -> ( x .+ .0. ) = x ) |
12 |
11
|
adantlr |
|- ( ( ( M e. Mnd /\ X e. ( B ^m I ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
13 |
6 8 10 12
|
caofid0r |
|- ( ( M e. Mnd /\ X e. ( B ^m I ) ) -> ( X oF .+ ( I X. { .0. } ) ) = X ) |