| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- -oo = -oo |
| 2 |
|
olc |
|- ( ( -oo = -oo /\ A e. RR ) -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) ) |
| 4 |
3
|
olcd |
|- ( A e. RR -> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo |
| 5 |
|
mnfxr |
|- -oo e. RR* |
| 6 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 7 |
|
ltxr |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo |
| 8 |
5 6 7
|
sylancr |
|- ( A e. RR -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo |
| 9 |
4 8
|
mpbird |
|- ( A e. RR -> -oo < A ) |