Metamath Proof Explorer


Theorem mnfltpnf

Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion mnfltpnf
|- -oo < +oo

Proof

Step Hyp Ref Expression
1 eqid
 |-  -oo = -oo
2 eqid
 |-  +oo = +oo
3 olc
 |-  ( ( -oo = -oo /\ +oo = +oo ) -> ( ( ( -oo e. RR /\ +oo e. RR ) /\ -oo 
4 1 2 3 mp2an
 |-  ( ( ( -oo e. RR /\ +oo e. RR ) /\ -oo 
5 4 orci
 |-  ( ( ( ( -oo e. RR /\ +oo e. RR ) /\ -oo 
6 mnfxr
 |-  -oo e. RR*
7 pnfxr
 |-  +oo e. RR*
8 ltxr
 |-  ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo < +oo <-> ( ( ( ( -oo e. RR /\ +oo e. RR ) /\ -oo 
9 6 7 8 mp2an
 |-  ( -oo < +oo <-> ( ( ( ( -oo e. RR /\ +oo e. RR ) /\ -oo 
10 5 9 mpbir
 |-  -oo < +oo