Metamath Proof Explorer


Theorem mo

Description: Equivalent definitions of "there exists at most one". (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 2-Dec-2018)

Ref Expression
Hypothesis mo.nf
|- F/ y ph
Assertion mo
|- ( E. y A. x ( ph -> x = y ) <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) )

Proof

Step Hyp Ref Expression
1 mo.nf
 |-  F/ y ph
2 1 mof
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
3 1 mo3
 |-  ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) )
4 2 3 bitr3i
 |-  ( E. y A. x ( ph -> x = y ) <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) )