Description: Equivalent definitions of "there exists at most one". (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mo.nf | |- F/ y ph | |
| Assertion | mo | |- ( E. y A. x ( ph -> x = y ) <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mo.nf | |- F/ y ph | |
| 2 | 1 | mof | |- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) | 
| 3 | 1 | mo3 | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) | 
| 4 | 2 3 | bitr3i | |- ( E. y A. x ( ph -> x = y ) <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |