Metamath Proof Explorer


Theorem mo0

Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mo0
|- ( A = (/) -> E* x x e. A )

Proof

Step Hyp Ref Expression
1 vsn
 |-  { _V } = (/)
2 1 eqcomi
 |-  (/) = { _V }
3 eqeq1
 |-  ( A = (/) -> ( A = { _V } <-> (/) = { _V } ) )
4 2 3 mpbiri
 |-  ( A = (/) -> A = { _V } )
5 mosn
 |-  ( A = { _V } -> E* x x e. A )
6 4 5 syl
 |-  ( A = (/) -> E* x x e. A )