Step |
Hyp |
Ref |
Expression |
1 |
|
mo3.nf |
|- F/ y ph |
2 |
|
nfmo1 |
|- F/ x E* x ph |
3 |
1
|
nfmov |
|- F/ y E* x ph |
4 |
|
df-mo |
|- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
5 |
|
sp |
|- ( A. x ( ph -> x = z ) -> ( ph -> x = z ) ) |
6 |
|
spsbim |
|- ( A. x ( ph -> x = z ) -> ( [ y / x ] ph -> [ y / x ] x = z ) ) |
7 |
|
equsb3 |
|- ( [ y / x ] x = z <-> y = z ) |
8 |
6 7
|
syl6ib |
|- ( A. x ( ph -> x = z ) -> ( [ y / x ] ph -> y = z ) ) |
9 |
5 8
|
anim12d |
|- ( A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> ( x = z /\ y = z ) ) ) |
10 |
|
equtr2 |
|- ( ( x = z /\ y = z ) -> x = y ) |
11 |
9 10
|
syl6 |
|- ( A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
12 |
11
|
exlimiv |
|- ( E. z A. x ( ph -> x = z ) -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
13 |
4 12
|
sylbi |
|- ( E* x ph -> ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
14 |
3 13
|
alrimi |
|- ( E* x ph -> A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
15 |
2 14
|
alrimi |
|- ( E* x ph -> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
16 |
|
nfs1v |
|- F/ x [ y / x ] ph |
17 |
|
pm3.21 |
|- ( [ y / x ] ph -> ( ph -> ( ph /\ [ y / x ] ph ) ) ) |
18 |
17
|
imim1d |
|- ( [ y / x ] ph -> ( ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( ph -> x = y ) ) ) |
19 |
16 18
|
alimd |
|- ( [ y / x ] ph -> ( A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> A. x ( ph -> x = y ) ) ) |
20 |
19
|
com12 |
|- ( A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( [ y / x ] ph -> A. x ( ph -> x = y ) ) ) |
21 |
20
|
aleximi |
|- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( E. y [ y / x ] ph -> E. y A. x ( ph -> x = y ) ) ) |
22 |
1
|
sb8ev |
|- ( E. x ph <-> E. y [ y / x ] ph ) |
23 |
1
|
mof |
|- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |
24 |
21 22 23
|
3imtr4g |
|- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( E. x ph -> E* x ph ) ) |
25 |
|
moabs |
|- ( E* x ph <-> ( E. x ph -> E* x ph ) ) |
26 |
24 25
|
sylibr |
|- ( A. y A. x ( ( ph /\ [ y / x ] ph ) -> x = y ) -> E* x ph ) |
27 |
26
|
alcoms |
|- ( A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) -> E* x ph ) |
28 |
15 27
|
impbii |
|- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |