Description: At-most-one quantifier expressed using implicit substitution. This theorem is also a direct consequence of mo4f , but this proof is based on fewer axioms.
By the way, swapping x , y and ph , ps leads to an expression for E* y ps , which is equivalent to E* x ph (is a proof line), so the right hand side is a rare instance of an expression where swapping the quantifiers can be done without ax-11 . (Contributed by NM, 26-Jul-1995) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | mo4 | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | df-mo | |- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
|
| 3 | equequ1 | |- ( x = y -> ( x = z <-> y = z ) ) |
|
| 4 | 1 3 | imbi12d | |- ( x = y -> ( ( ph -> x = z ) <-> ( ps -> y = z ) ) ) |
| 5 | 4 | cbvalvw | |- ( A. x ( ph -> x = z ) <-> A. y ( ps -> y = z ) ) |
| 6 | 5 | biimpi | |- ( A. x ( ph -> x = z ) -> A. y ( ps -> y = z ) ) |
| 7 | pm2.27 | |- ( ph -> ( ( ph -> x = z ) -> x = z ) ) |
|
| 8 | pm2.27 | |- ( ps -> ( ( ps -> y = z ) -> y = z ) ) |
|
| 9 | 7 8 | im2anan9 | |- ( ( ph /\ ps ) -> ( ( ( ph -> x = z ) /\ ( ps -> y = z ) ) -> ( x = z /\ y = z ) ) ) |
| 10 | equtr2 | |- ( ( x = z /\ y = z ) -> x = y ) |
|
| 11 | 9 10 | syl6com | |- ( ( ( ph -> x = z ) /\ ( ps -> y = z ) ) -> ( ( ph /\ ps ) -> x = y ) ) |
| 12 | 11 | ex | |- ( ( ph -> x = z ) -> ( ( ps -> y = z ) -> ( ( ph /\ ps ) -> x = y ) ) ) |
| 13 | 12 | alimdv | |- ( ( ph -> x = z ) -> ( A. y ( ps -> y = z ) -> A. y ( ( ph /\ ps ) -> x = y ) ) ) |
| 14 | 13 | com12 | |- ( A. y ( ps -> y = z ) -> ( ( ph -> x = z ) -> A. y ( ( ph /\ ps ) -> x = y ) ) ) |
| 15 | 14 | alimdv | |- ( A. y ( ps -> y = z ) -> ( A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) ) |
| 16 | 6 15 | mpcom | |- ( A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
| 17 | 16 | exlimiv | |- ( E. z A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
| 18 | 2 17 | sylbi | |- ( E* x ph -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
| 19 | 1 | cbvexvw | |- ( E. x ph <-> E. y ps ) |
| 20 | 19 | biimpri | |- ( E. y ps -> E. x ph ) |
| 21 | ax6evr | |- E. z x = z |
|
| 22 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
| 23 | 22 | imim1d | |- ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> x = y ) ) ) |
| 24 | ax7 | |- ( x = y -> ( x = z -> y = z ) ) |
|
| 25 | 23 24 | syl8 | |- ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> ( x = z -> y = z ) ) ) ) |
| 26 | 25 | com4r | |- ( x = z -> ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> y = z ) ) ) ) |
| 27 | 26 | impcom | |- ( ( ph /\ x = z ) -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> y = z ) ) ) |
| 28 | 27 | alimdv | |- ( ( ph /\ x = z ) -> ( A. y ( ( ph /\ ps ) -> x = y ) -> A. y ( ps -> y = z ) ) ) |
| 29 | 28 | impancom | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> ( x = z -> A. y ( ps -> y = z ) ) ) |
| 30 | 29 | eximdv | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> ( E. z x = z -> E. z A. y ( ps -> y = z ) ) ) |
| 31 | 21 30 | mpi | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> E. z A. y ( ps -> y = z ) ) |
| 32 | df-mo | |- ( E* y ps <-> E. z A. y ( ps -> y = z ) ) |
|
| 33 | 31 32 | sylibr | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> E* y ps ) |
| 34 | 33 | expcom | |- ( A. y ( ( ph /\ ps ) -> x = y ) -> ( ph -> E* y ps ) ) |
| 35 | 34 | aleximi | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> ( E. x ph -> E. x E* y ps ) ) |
| 36 | ax5e | |- ( E. x E* y ps -> E* y ps ) |
|
| 37 | 20 35 36 | syl56 | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> ( E. y ps -> E* y ps ) ) |
| 38 | 5 | exbii | |- ( E. z A. x ( ph -> x = z ) <-> E. z A. y ( ps -> y = z ) ) |
| 39 | 38 2 32 | 3bitr4i | |- ( E* x ph <-> E* y ps ) |
| 40 | moabs | |- ( E* y ps <-> ( E. y ps -> E* y ps ) ) |
|
| 41 | 39 40 | bitri | |- ( E* x ph <-> ( E. y ps -> E* y ps ) ) |
| 42 | 37 41 | sylibr | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> E* x ph ) |
| 43 | 18 42 | impbii | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |