Description: At-most-one quantifier expressed using implicit substitution. This theorem is also a direct consequence of mo4f , but this proof is based on fewer axioms.
By the way, swapping x , y and ph , ps leads to an expression for E* y ps , which is equivalent to E* x ph (is a proof line), so the right hand side is a rare instance of an expression where swapping the quantifiers can be done without ax-11 . (Contributed by NM, 26-Jul-1995) Reduce axiom usage. (Revised by Wolf Lammen, 18-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
Assertion | mo4 | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo4.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | df-mo | |- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
|
3 | equequ1 | |- ( x = y -> ( x = z <-> y = z ) ) |
|
4 | 1 3 | imbi12d | |- ( x = y -> ( ( ph -> x = z ) <-> ( ps -> y = z ) ) ) |
5 | 4 | cbvalvw | |- ( A. x ( ph -> x = z ) <-> A. y ( ps -> y = z ) ) |
6 | 5 | biimpi | |- ( A. x ( ph -> x = z ) -> A. y ( ps -> y = z ) ) |
7 | pm2.27 | |- ( ph -> ( ( ph -> x = z ) -> x = z ) ) |
|
8 | 7 | adantr | |- ( ( ph /\ ps ) -> ( ( ph -> x = z ) -> x = z ) ) |
9 | pm2.27 | |- ( ps -> ( ( ps -> y = z ) -> y = z ) ) |
|
10 | 9 | adantl | |- ( ( ph /\ ps ) -> ( ( ps -> y = z ) -> y = z ) ) |
11 | 8 10 | anim12d | |- ( ( ph /\ ps ) -> ( ( ( ph -> x = z ) /\ ( ps -> y = z ) ) -> ( x = z /\ y = z ) ) ) |
12 | equtr2 | |- ( ( x = z /\ y = z ) -> x = y ) |
|
13 | 11 12 | syl6com | |- ( ( ( ph -> x = z ) /\ ( ps -> y = z ) ) -> ( ( ph /\ ps ) -> x = y ) ) |
14 | 13 | ex | |- ( ( ph -> x = z ) -> ( ( ps -> y = z ) -> ( ( ph /\ ps ) -> x = y ) ) ) |
15 | 14 | alimdv | |- ( ( ph -> x = z ) -> ( A. y ( ps -> y = z ) -> A. y ( ( ph /\ ps ) -> x = y ) ) ) |
16 | 15 | com12 | |- ( A. y ( ps -> y = z ) -> ( ( ph -> x = z ) -> A. y ( ( ph /\ ps ) -> x = y ) ) ) |
17 | 16 | alimdv | |- ( A. y ( ps -> y = z ) -> ( A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) ) |
18 | 6 17 | mpcom | |- ( A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
19 | 18 | exlimiv | |- ( E. z A. x ( ph -> x = z ) -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
20 | 2 19 | sylbi | |- ( E* x ph -> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
21 | 1 | cbvexvw | |- ( E. x ph <-> E. y ps ) |
22 | 21 | biimpri | |- ( E. y ps -> E. x ph ) |
23 | ax6evr | |- E. z x = z |
|
24 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
25 | 24 | imim1d | |- ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> x = y ) ) ) |
26 | ax7 | |- ( x = y -> ( x = z -> y = z ) ) |
|
27 | 25 26 | syl8 | |- ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> ( x = z -> y = z ) ) ) ) |
28 | 27 | com4r | |- ( x = z -> ( ph -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> y = z ) ) ) ) |
29 | 28 | impcom | |- ( ( ph /\ x = z ) -> ( ( ( ph /\ ps ) -> x = y ) -> ( ps -> y = z ) ) ) |
30 | 29 | alimdv | |- ( ( ph /\ x = z ) -> ( A. y ( ( ph /\ ps ) -> x = y ) -> A. y ( ps -> y = z ) ) ) |
31 | 30 | impancom | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> ( x = z -> A. y ( ps -> y = z ) ) ) |
32 | 31 | eximdv | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> ( E. z x = z -> E. z A. y ( ps -> y = z ) ) ) |
33 | 23 32 | mpi | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> E. z A. y ( ps -> y = z ) ) |
34 | df-mo | |- ( E* y ps <-> E. z A. y ( ps -> y = z ) ) |
|
35 | 33 34 | sylibr | |- ( ( ph /\ A. y ( ( ph /\ ps ) -> x = y ) ) -> E* y ps ) |
36 | 35 | expcom | |- ( A. y ( ( ph /\ ps ) -> x = y ) -> ( ph -> E* y ps ) ) |
37 | 36 | aleximi | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> ( E. x ph -> E. x E* y ps ) ) |
38 | ax5e | |- ( E. x E* y ps -> E* y ps ) |
|
39 | 22 37 38 | syl56 | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> ( E. y ps -> E* y ps ) ) |
40 | 5 | exbii | |- ( E. z A. x ( ph -> x = z ) <-> E. z A. y ( ps -> y = z ) ) |
41 | 40 2 34 | 3bitr4i | |- ( E* x ph <-> E* y ps ) |
42 | moabs | |- ( E* y ps <-> ( E. y ps -> E* y ps ) ) |
|
43 | 41 42 | bitri | |- ( E* x ph <-> ( E. y ps -> E* y ps ) ) |
44 | 39 43 | sylibr | |- ( A. x A. y ( ( ph /\ ps ) -> x = y ) -> E* x ph ) |
45 | 20 44 | impbii | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |