Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on y , ph can be replaced by the nonfreeness hypothesis |- F/ y ph with essentially the same proof. (Contributed by NM, 10-Apr-2004) Remove dependency on ax-13 . (Revised by Wolf Lammen, 19-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mo4f.1 | |- F/ x ps |
|
mo4f.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | mo4f | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo4f.1 | |- F/ x ps |
|
2 | mo4f.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
3 | nfv | |- F/ y ph |
|
4 | 3 | mo3 | |- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
5 | 1 2 | sbiev | |- ( [ y / x ] ph <-> ps ) |
6 | 5 | anbi2i | |- ( ( ph /\ [ y / x ] ph ) <-> ( ph /\ ps ) ) |
7 | 6 | imbi1i | |- ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ ps ) -> x = y ) ) |
8 | 7 | 2albii | |- ( A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |
9 | 4 8 | bitri | |- ( E* x ph <-> A. x A. y ( ( ph /\ ps ) -> x = y ) ) |