Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996)

Ref Expression
Assertion moabex
|- ( E* x ph -> { x | ph } e. _V )

Proof

Step Hyp Ref Expression
1 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
2 abss
 |-  ( { x | ph } C_ { y } <-> A. x ( ph -> x e. { y } ) )
3 velsn
 |-  ( x e. { y } <-> x = y )
4 3 imbi2i
 |-  ( ( ph -> x e. { y } ) <-> ( ph -> x = y ) )
5 4 albii
 |-  ( A. x ( ph -> x e. { y } ) <-> A. x ( ph -> x = y ) )
6 2 5 bitri
 |-  ( { x | ph } C_ { y } <-> A. x ( ph -> x = y ) )
7 snex
 |-  { y } e. _V
8 7 ssex
 |-  ( { x | ph } C_ { y } -> { x | ph } e. _V )
9 6 8 sylbir
 |-  ( A. x ( ph -> x = y ) -> { x | ph } e. _V )
10 9 exlimiv
 |-  ( E. y A. x ( ph -> x = y ) -> { x | ph } e. _V )
11 1 10 sylbi
 |-  ( E* x ph -> { x | ph } e. _V )