Metamath Proof Explorer


Theorem moabs

Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002) Shorten proof and avoid df-eu . (Revised by BJ, 14-Oct-2022)

Ref Expression
Assertion moabs
|- ( E* x ph <-> ( E. x ph -> E* x ph ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( E* x ph -> ( E. x ph -> E* x ph ) )
2 nexmo
 |-  ( -. E. x ph -> E* x ph )
3 id
 |-  ( E* x ph -> E* x ph )
4 2 3 ja
 |-  ( ( E. x ph -> E* x ph ) -> E* x ph )
5 1 4 impbii
 |-  ( E* x ph <-> ( E. x ph -> E* x ph ) )