Metamath Proof Explorer


Theorem moaneu

Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion moaneu
|- E* x ( ph /\ E! x ph )

Proof

Step Hyp Ref Expression
1 moanmo
 |-  E* x ( ph /\ E* x ph )
2 eumo
 |-  ( E! x ph -> E* x ph )
3 2 anim2i
 |-  ( ( ph /\ E! x ph ) -> ( ph /\ E* x ph ) )
4 3 moimi
 |-  ( E* x ( ph /\ E* x ph ) -> E* x ( ph /\ E! x ph ) )
5 1 4 ax-mp
 |-  E* x ( ph /\ E! x ph )