Metamath Proof Explorer


Theorem moanimlem

Description: Factor out the common proof skeleton of moanimv and moanim . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018) Factor out common proof lines. (Revised by Wolf Lammen, 8-Feb-2023)

Ref Expression
Hypotheses moanimlem.1
|- ( ph -> ( E* x ps <-> E* x ( ph /\ ps ) ) )
moanimlem.2
|- ( E. x ( ph /\ ps ) -> ph )
Assertion moanimlem
|- ( E* x ( ph /\ ps ) <-> ( ph -> E* x ps ) )

Proof

Step Hyp Ref Expression
1 moanimlem.1
 |-  ( ph -> ( E* x ps <-> E* x ( ph /\ ps ) ) )
2 moanimlem.2
 |-  ( E. x ( ph /\ ps ) -> ph )
3 1 biimprcd
 |-  ( E* x ( ph /\ ps ) -> ( ph -> E* x ps ) )
4 nexmo
 |-  ( -. E. x ( ph /\ ps ) -> E* x ( ph /\ ps ) )
5 2 4 nsyl5
 |-  ( -. ph -> E* x ( ph /\ ps ) )
6 moan
 |-  ( E* x ps -> E* x ( ph /\ ps ) )
7 5 6 ja
 |-  ( ( ph -> E* x ps ) -> E* x ( ph /\ ps ) )
8 3 7 impbii
 |-  ( E* x ( ph /\ ps ) <-> ( ph -> E* x ps ) )