Metamath Proof Explorer


Theorem moanmo

Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006)

Ref Expression
Assertion moanmo
|- E* x ( ph /\ E* x ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( E* x ph -> E* x ph )
2 nfmo1
 |-  F/ x E* x ph
3 2 moanim
 |-  ( E* x ( E* x ph /\ ph ) <-> ( E* x ph -> E* x ph ) )
4 1 3 mpbir
 |-  E* x ( E* x ph /\ ph )
5 ancom
 |-  ( ( ph /\ E* x ph ) <-> ( E* x ph /\ ph ) )
6 5 mobii
 |-  ( E* x ( ph /\ E* x ph ) <-> E* x ( E* x ph /\ ph ) )
7 4 6 mpbir
 |-  E* x ( ph /\ E* x ph )