Step |
Hyp |
Ref |
Expression |
1 |
|
moi.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
moi.2 |
|- ( x = B -> ( ph <-> ch ) ) |
3 |
|
elex |
|- ( B e. D -> B e. _V ) |
4 |
|
nfv |
|- F/ x B e. _V |
5 |
|
nfmo1 |
|- F/ x E* x ph |
6 |
|
nfv |
|- F/ x ps |
7 |
4 5 6
|
nf3an |
|- F/ x ( B e. _V /\ E* x ph /\ ps ) |
8 |
|
nfv |
|- F/ x ( A = B <-> ch ) |
9 |
7 8
|
nfim |
|- F/ x ( ( B e. _V /\ E* x ph /\ ps ) -> ( A = B <-> ch ) ) |
10 |
1
|
3anbi3d |
|- ( x = A -> ( ( B e. _V /\ E* x ph /\ ph ) <-> ( B e. _V /\ E* x ph /\ ps ) ) ) |
11 |
|
eqeq1 |
|- ( x = A -> ( x = B <-> A = B ) ) |
12 |
11
|
bibi1d |
|- ( x = A -> ( ( x = B <-> ch ) <-> ( A = B <-> ch ) ) ) |
13 |
10 12
|
imbi12d |
|- ( x = A -> ( ( ( B e. _V /\ E* x ph /\ ph ) -> ( x = B <-> ch ) ) <-> ( ( B e. _V /\ E* x ph /\ ps ) -> ( A = B <-> ch ) ) ) ) |
14 |
2
|
mob2 |
|- ( ( B e. _V /\ E* x ph /\ ph ) -> ( x = B <-> ch ) ) |
15 |
9 13 14
|
vtoclg1f |
|- ( A e. C -> ( ( B e. _V /\ E* x ph /\ ps ) -> ( A = B <-> ch ) ) ) |
16 |
15
|
com12 |
|- ( ( B e. _V /\ E* x ph /\ ps ) -> ( A e. C -> ( A = B <-> ch ) ) ) |
17 |
16
|
3expib |
|- ( B e. _V -> ( ( E* x ph /\ ps ) -> ( A e. C -> ( A = B <-> ch ) ) ) ) |
18 |
3 17
|
syl |
|- ( B e. D -> ( ( E* x ph /\ ps ) -> ( A e. C -> ( A = B <-> ch ) ) ) ) |
19 |
18
|
com3r |
|- ( A e. C -> ( B e. D -> ( ( E* x ph /\ ps ) -> ( A = B <-> ch ) ) ) ) |
20 |
19
|
imp |
|- ( ( A e. C /\ B e. D ) -> ( ( E* x ph /\ ps ) -> ( A = B <-> ch ) ) ) |
21 |
20
|
3impib |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph /\ ps ) -> ( A = B <-> ch ) ) |