Step |
Hyp |
Ref |
Expression |
1 |
|
moi2.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
simp3 |
|- ( ( A e. B /\ E* x ph /\ ph ) -> ph ) |
3 |
2 1
|
syl5ibcom |
|- ( ( A e. B /\ E* x ph /\ ph ) -> ( x = A -> ps ) ) |
4 |
|
nfv |
|- F/ x ps |
5 |
4 1
|
sbhypf |
|- ( y = A -> ( [ y / x ] ph <-> ps ) ) |
6 |
5
|
anbi2d |
|- ( y = A -> ( ( ph /\ [ y / x ] ph ) <-> ( ph /\ ps ) ) ) |
7 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
8 |
6 7
|
imbi12d |
|- ( y = A -> ( ( ( ph /\ [ y / x ] ph ) -> x = y ) <-> ( ( ph /\ ps ) -> x = A ) ) ) |
9 |
8
|
spcgv |
|- ( A e. B -> ( A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) -> ( ( ph /\ ps ) -> x = A ) ) ) |
10 |
|
nfs1v |
|- F/ x [ y / x ] ph |
11 |
|
sbequ12 |
|- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
12 |
10 11
|
mo4f |
|- ( E* x ph <-> A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
13 |
|
sp |
|- ( A. x A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) -> A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
14 |
12 13
|
sylbi |
|- ( E* x ph -> A. y ( ( ph /\ [ y / x ] ph ) -> x = y ) ) |
15 |
9 14
|
impel |
|- ( ( A e. B /\ E* x ph ) -> ( ( ph /\ ps ) -> x = A ) ) |
16 |
15
|
expd |
|- ( ( A e. B /\ E* x ph ) -> ( ph -> ( ps -> x = A ) ) ) |
17 |
16
|
3impia |
|- ( ( A e. B /\ E* x ph /\ ph ) -> ( ps -> x = A ) ) |
18 |
3 17
|
impbid |
|- ( ( A e. B /\ E* x ph /\ ph ) -> ( x = A <-> ps ) ) |