Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | mobi | |- ( A. x ( ph <-> ps ) -> ( E* x ph <-> E* x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim | |- ( A. x ( ph <-> ps ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) ) |
|
2 | moim | |- ( A. x ( ps -> ph ) -> ( E* x ph -> E* x ps ) ) |
|
3 | moim | |- ( A. x ( ph -> ps ) -> ( E* x ps -> E* x ph ) ) |
|
4 | 2 3 | impbid21d | |- ( A. x ( ph -> ps ) -> ( A. x ( ps -> ph ) -> ( E* x ph <-> E* x ps ) ) ) |
5 | 4 | imp | |- ( ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) -> ( E* x ph <-> E* x ps ) ) |
6 | 1 5 | sylbi | |- ( A. x ( ph <-> ps ) -> ( E* x ph <-> E* x ps ) ) |