Metamath Proof Explorer


Theorem mobid

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by NM, 8-Mar-1995) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 14-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Hypotheses mobid.1
|- F/ x ph
mobid.2
|- ( ph -> ( ps <-> ch ) )
Assertion mobid
|- ( ph -> ( E* x ps <-> E* x ch ) )

Proof

Step Hyp Ref Expression
1 mobid.1
 |-  F/ x ph
2 mobid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 alrimi
 |-  ( ph -> A. x ( ps <-> ch ) )
4 mobi
 |-  ( A. x ( ps <-> ch ) -> ( E* x ps <-> E* x ch ) )
5 3 4 syl
 |-  ( ph -> ( E* x ps <-> E* x ch ) )