Metamath Proof Explorer


Theorem mobii

Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 17-Oct-2016) Avoid ax-5 . (Revised by Wolf Lammen, 24-Sep-2023)

Ref Expression
Hypothesis mobii.1
|- ( ps <-> ch )
Assertion mobii
|- ( E* x ps <-> E* x ch )

Proof

Step Hyp Ref Expression
1 mobii.1
 |-  ( ps <-> ch )
2 1 biimpri
 |-  ( ch -> ps )
3 2 moimi
 |-  ( E* x ps -> E* x ch )
4 1 biimpi
 |-  ( ps -> ch )
5 4 moimi
 |-  ( E* x ch -> E* x ps )
6 3 5 impbii
 |-  ( E* x ps <-> E* x ch )