Description: An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mod2eq0even | |- ( N e. ZZ -> ( ( N mod 2 ) = 0 <-> 2 || N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn | |- 2 e. NN |
|
2 | dvdsval3 | |- ( ( 2 e. NN /\ N e. ZZ ) -> ( 2 || N <-> ( N mod 2 ) = 0 ) ) |
|
3 | 1 2 | mpan | |- ( N e. ZZ -> ( 2 || N <-> ( N mod 2 ) = 0 ) ) |
4 | 3 | bicomd | |- ( N e. ZZ -> ( ( N mod 2 ) = 0 <-> 2 || N ) ) |