Step |
Hyp |
Ref |
Expression |
1 |
|
zeo |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
3 |
|
2rp |
|- 2 e. RR+ |
4 |
|
mod0 |
|- ( ( N e. RR /\ 2 e. RR+ ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
5 |
2 3 4
|
sylancl |
|- ( N e. ZZ -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
6 |
5
|
biimpar |
|- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( N mod 2 ) = 0 ) |
7 |
|
eqeq1 |
|- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 <-> 0 = 1 ) ) |
8 |
|
0ne1 |
|- 0 =/= 1 |
9 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
10 |
8 9
|
mpi |
|- ( 0 = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
11 |
7 10
|
syl6bi |
|- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
12 |
6 11
|
syl |
|- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
13 |
12
|
expcom |
|- ( ( N / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
14 |
|
peano2zm |
|- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
16 |
|
xp1d2m1eqxm1d2 |
|- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
17 |
15 16
|
syl |
|- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
18 |
17
|
eleq1d |
|- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
19 |
18
|
biimpd |
|- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ -> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
20 |
14 19
|
mpan9 |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
21 |
|
oveq2 |
|- ( n = ( ( N - 1 ) / 2 ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
22 |
21
|
adantl |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
23 |
22
|
oveq1d |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
24 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
25 |
24
|
zcnd |
|- ( N e. ZZ -> ( N - 1 ) e. CC ) |
26 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
27 |
|
2ne0 |
|- 2 =/= 0 |
28 |
27
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
29 |
25 26 28
|
divcan2d |
|- ( N e. ZZ -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
30 |
29
|
oveq1d |
|- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
31 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
32 |
15 31
|
syl |
|- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
33 |
30 32
|
eqtrd |
|- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
34 |
33
|
ad2antlr |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
35 |
23 34
|
eqtrd |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
36 |
20 35
|
rspcedeq1vd |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
37 |
36
|
a1d |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
38 |
37
|
ex |
|- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
39 |
13 38
|
jaoi |
|- ( ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
40 |
1 39
|
mpcom |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
41 |
|
oveq1 |
|- ( N = ( ( 2 x. n ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
42 |
41
|
eqcoms |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
43 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
44 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
45 |
43 44
|
mulcomd |
|- ( n e. ZZ -> ( 2 x. n ) = ( n x. 2 ) ) |
46 |
45
|
oveq1d |
|- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = ( ( n x. 2 ) mod 2 ) ) |
47 |
|
mulmod0 |
|- ( ( n e. ZZ /\ 2 e. RR+ ) -> ( ( n x. 2 ) mod 2 ) = 0 ) |
48 |
3 47
|
mpan2 |
|- ( n e. ZZ -> ( ( n x. 2 ) mod 2 ) = 0 ) |
49 |
46 48
|
eqtrd |
|- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = 0 ) |
50 |
49
|
oveq1d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = ( 0 + 1 ) ) |
51 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
52 |
50 51
|
eqtrdi |
|- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = 1 ) |
53 |
52
|
oveq1d |
|- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( 1 mod 2 ) ) |
54 |
|
2z |
|- 2 e. ZZ |
55 |
54
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
56 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
57 |
55 56
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
58 |
57
|
zred |
|- ( n e. ZZ -> ( 2 x. n ) e. RR ) |
59 |
|
1red |
|- ( n e. ZZ -> 1 e. RR ) |
60 |
3
|
a1i |
|- ( n e. ZZ -> 2 e. RR+ ) |
61 |
|
modaddmod |
|- ( ( ( 2 x. n ) e. RR /\ 1 e. RR /\ 2 e. RR+ ) -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
62 |
58 59 60 61
|
syl3anc |
|- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
63 |
|
2re |
|- 2 e. RR |
64 |
|
1lt2 |
|- 1 < 2 |
65 |
63 64
|
pm3.2i |
|- ( 2 e. RR /\ 1 < 2 ) |
66 |
|
1mod |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( 1 mod 2 ) = 1 ) |
67 |
65 66
|
mp1i |
|- ( n e. ZZ -> ( 1 mod 2 ) = 1 ) |
68 |
53 62 67
|
3eqtr3d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
69 |
68
|
adantl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
70 |
42 69
|
sylan9eqr |
|- ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( N mod 2 ) = 1 ) |
71 |
70
|
rexlimdva2 |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = 1 ) ) |
72 |
40 71
|
impbid |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
73 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
74 |
72 73
|
bitr4d |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> -. 2 || N ) ) |