| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zeo |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 3 |
|
2rp |
|- 2 e. RR+ |
| 4 |
|
mod0 |
|- ( ( N e. RR /\ 2 e. RR+ ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
| 5 |
2 3 4
|
sylancl |
|- ( N e. ZZ -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
| 6 |
5
|
biimpar |
|- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( N mod 2 ) = 0 ) |
| 7 |
|
eqeq1 |
|- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 <-> 0 = 1 ) ) |
| 8 |
|
0ne1 |
|- 0 =/= 1 |
| 9 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 10 |
8 9
|
mpi |
|- ( 0 = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 11 |
7 10
|
biimtrdi |
|- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 12 |
6 11
|
syl |
|- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 13 |
12
|
expcom |
|- ( ( N / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 14 |
|
peano2zm |
|- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 16 |
|
xp1d2m1eqxm1d2 |
|- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 17 |
15 16
|
syl |
|- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 18 |
17
|
eleq1d |
|- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 19 |
18
|
biimpd |
|- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ -> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 20 |
14 19
|
mpan9 |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 21 |
|
oveq2 |
|- ( n = ( ( N - 1 ) / 2 ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 24 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( N e. ZZ -> ( N - 1 ) e. CC ) |
| 26 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
| 27 |
|
2ne0 |
|- 2 =/= 0 |
| 28 |
27
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
| 29 |
25 26 28
|
divcan2d |
|- ( N e. ZZ -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
| 30 |
29
|
oveq1d |
|- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 31 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 32 |
15 31
|
syl |
|- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
| 33 |
30 32
|
eqtrd |
|- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
| 34 |
33
|
ad2antlr |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
| 35 |
23 34
|
eqtrd |
|- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
| 36 |
20 35
|
rspcedeq1vd |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 37 |
36
|
a1d |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 38 |
37
|
ex |
|- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 39 |
13 38
|
jaoi |
|- ( ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 40 |
1 39
|
mpcom |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 41 |
|
oveq1 |
|- ( N = ( ( 2 x. n ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 42 |
41
|
eqcoms |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 43 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
| 44 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 45 |
43 44
|
mulcomd |
|- ( n e. ZZ -> ( 2 x. n ) = ( n x. 2 ) ) |
| 46 |
45
|
oveq1d |
|- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = ( ( n x. 2 ) mod 2 ) ) |
| 47 |
|
mulmod0 |
|- ( ( n e. ZZ /\ 2 e. RR+ ) -> ( ( n x. 2 ) mod 2 ) = 0 ) |
| 48 |
3 47
|
mpan2 |
|- ( n e. ZZ -> ( ( n x. 2 ) mod 2 ) = 0 ) |
| 49 |
46 48
|
eqtrd |
|- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = 0 ) |
| 50 |
49
|
oveq1d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = ( 0 + 1 ) ) |
| 51 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 52 |
50 51
|
eqtrdi |
|- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = 1 ) |
| 53 |
52
|
oveq1d |
|- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( 1 mod 2 ) ) |
| 54 |
|
2z |
|- 2 e. ZZ |
| 55 |
54
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
| 56 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
| 57 |
55 56
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 58 |
57
|
zred |
|- ( n e. ZZ -> ( 2 x. n ) e. RR ) |
| 59 |
|
1red |
|- ( n e. ZZ -> 1 e. RR ) |
| 60 |
3
|
a1i |
|- ( n e. ZZ -> 2 e. RR+ ) |
| 61 |
|
modaddmod |
|- ( ( ( 2 x. n ) e. RR /\ 1 e. RR /\ 2 e. RR+ ) -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 62 |
58 59 60 61
|
syl3anc |
|- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 63 |
|
2re |
|- 2 e. RR |
| 64 |
|
1lt2 |
|- 1 < 2 |
| 65 |
63 64
|
pm3.2i |
|- ( 2 e. RR /\ 1 < 2 ) |
| 66 |
|
1mod |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( 1 mod 2 ) = 1 ) |
| 67 |
65 66
|
mp1i |
|- ( n e. ZZ -> ( 1 mod 2 ) = 1 ) |
| 68 |
53 62 67
|
3eqtr3d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
| 69 |
68
|
adantl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
| 70 |
42 69
|
sylan9eqr |
|- ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( N mod 2 ) = 1 ) |
| 71 |
70
|
rexlimdva2 |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = 1 ) ) |
| 72 |
40 71
|
impbid |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 73 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 74 |
72 73
|
bitr4d |
|- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> -. 2 || N ) ) |