Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | modxai.1 | |- N e. NN |
|
modxai.2 | |- A e. NN |
||
modxai.3 | |- B e. NN0 |
||
modxai.4 | |- D e. ZZ |
||
modxai.5 | |- K e. NN0 |
||
modxai.6 | |- M e. NN0 |
||
mod2xi.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
||
mod2xi.7 | |- ( 2 x. B ) = E |
||
mod2xi.8 | |- ( ( D x. N ) + M ) = ( K x. K ) |
||
Assertion | mod2xi | |- ( ( A ^ E ) mod N ) = ( M mod N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | |- N e. NN |
|
2 | modxai.2 | |- A e. NN |
|
3 | modxai.3 | |- B e. NN0 |
|
4 | modxai.4 | |- D e. ZZ |
|
5 | modxai.5 | |- K e. NN0 |
|
6 | modxai.6 | |- M e. NN0 |
|
7 | mod2xi.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
|
8 | mod2xi.7 | |- ( 2 x. B ) = E |
|
9 | mod2xi.8 | |- ( ( D x. N ) + M ) = ( K x. K ) |
|
10 | 3 | nn0cni | |- B e. CC |
11 | 10 | 2timesi | |- ( 2 x. B ) = ( B + B ) |
12 | 11 8 | eqtr3i | |- ( B + B ) = E |
13 | 1 2 3 4 5 6 3 5 7 7 12 9 | modxai | |- ( ( A ^ E ) mod N ) = ( M mod N ) |