Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modxai.1 | |- N e. NN | |
| modxai.2 | |- A e. NN | ||
| modxai.3 | |- B e. NN0 | ||
| modxai.4 | |- D e. ZZ | ||
| modxai.5 | |- K e. NN0 | ||
| modxai.6 | |- M e. NN0 | ||
| mod2xi.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) | ||
| mod2xi.7 | |- ( 2 x. B ) = E | ||
| mod2xi.8 | |- ( ( D x. N ) + M ) = ( K x. K ) | ||
| Assertion | mod2xi | |- ( ( A ^ E ) mod N ) = ( M mod N ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | modxai.1 | |- N e. NN | |
| 2 | modxai.2 | |- A e. NN | |
| 3 | modxai.3 | |- B e. NN0 | |
| 4 | modxai.4 | |- D e. ZZ | |
| 5 | modxai.5 | |- K e. NN0 | |
| 6 | modxai.6 | |- M e. NN0 | |
| 7 | mod2xi.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) | |
| 8 | mod2xi.7 | |- ( 2 x. B ) = E | |
| 9 | mod2xi.8 | |- ( ( D x. N ) + M ) = ( K x. K ) | |
| 10 | 3 | nn0cni | |- B e. CC | 
| 11 | 10 | 2timesi | |- ( 2 x. B ) = ( B + B ) | 
| 12 | 11 8 | eqtr3i | |- ( B + B ) = E | 
| 13 | 1 2 3 4 5 6 3 5 7 7 12 9 | modxai | |- ( ( A ^ E ) mod N ) = ( M mod N ) |