Step |
Hyp |
Ref |
Expression |
1 |
|
mod2xnegi.1 |
|- A e. NN |
2 |
|
mod2xnegi.2 |
|- B e. NN0 |
3 |
|
mod2xnegi.3 |
|- D e. ZZ |
4 |
|
mod2xnegi.4 |
|- K e. NN |
5 |
|
mod2xnegi.5 |
|- M e. NN0 |
6 |
|
mod2xnegi.6 |
|- L e. NN0 |
7 |
|
mod2xnegi.10 |
|- ( ( A ^ B ) mod N ) = ( L mod N ) |
8 |
|
mod2xnegi.7 |
|- ( 2 x. B ) = E |
9 |
|
mod2xnegi.8 |
|- ( L + K ) = N |
10 |
|
mod2xnegi.9 |
|- ( ( D x. N ) + M ) = ( K x. K ) |
11 |
|
nn0nnaddcl |
|- ( ( L e. NN0 /\ K e. NN ) -> ( L + K ) e. NN ) |
12 |
6 4 11
|
mp2an |
|- ( L + K ) e. NN |
13 |
9 12
|
eqeltrri |
|- N e. NN |
14 |
13
|
nnzi |
|- N e. ZZ |
15 |
|
zaddcl |
|- ( ( N e. ZZ /\ D e. ZZ ) -> ( N + D ) e. ZZ ) |
16 |
14 3 15
|
mp2an |
|- ( N + D ) e. ZZ |
17 |
4
|
nnnn0i |
|- K e. NN0 |
18 |
17 17
|
nn0addcli |
|- ( K + K ) e. NN0 |
19 |
18
|
nn0zi |
|- ( K + K ) e. ZZ |
20 |
|
zsubcl |
|- ( ( ( N + D ) e. ZZ /\ ( K + K ) e. ZZ ) -> ( ( N + D ) - ( K + K ) ) e. ZZ ) |
21 |
16 19 20
|
mp2an |
|- ( ( N + D ) - ( K + K ) ) e. ZZ |
22 |
13
|
nncni |
|- N e. CC |
23 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
24 |
3 23
|
ax-mp |
|- D e. CC |
25 |
22 24
|
addcli |
|- ( N + D ) e. CC |
26 |
4
|
nncni |
|- K e. CC |
27 |
26 26
|
addcli |
|- ( K + K ) e. CC |
28 |
25 27 22
|
subdiri |
|- ( ( ( N + D ) - ( K + K ) ) x. N ) = ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) |
29 |
28
|
oveq1i |
|- ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) |
30 |
25 22
|
mulcli |
|- ( ( N + D ) x. N ) e. CC |
31 |
5
|
nn0cni |
|- M e. CC |
32 |
27 22
|
mulcli |
|- ( ( K + K ) x. N ) e. CC |
33 |
30 31 32
|
addsubi |
|- ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) |
34 |
10
|
oveq2i |
|- ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( N x. N ) + ( K x. K ) ) |
35 |
22 26 26
|
adddii |
|- ( N x. ( K + K ) ) = ( ( N x. K ) + ( N x. K ) ) |
36 |
34 35
|
oveq12i |
|- ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) |
37 |
22 24 22
|
adddiri |
|- ( ( N + D ) x. N ) = ( ( N x. N ) + ( D x. N ) ) |
38 |
37
|
oveq1i |
|- ( ( ( N + D ) x. N ) + M ) = ( ( ( N x. N ) + ( D x. N ) ) + M ) |
39 |
22 22
|
mulcli |
|- ( N x. N ) e. CC |
40 |
24 22
|
mulcli |
|- ( D x. N ) e. CC |
41 |
39 40 31
|
addassi |
|- ( ( ( N x. N ) + ( D x. N ) ) + M ) = ( ( N x. N ) + ( ( D x. N ) + M ) ) |
42 |
38 41
|
eqtr2i |
|- ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( ( N + D ) x. N ) + M ) |
43 |
22 27
|
mulcomi |
|- ( N x. ( K + K ) ) = ( ( K + K ) x. N ) |
44 |
42 43
|
oveq12i |
|- ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) |
45 |
36 44
|
eqtr3i |
|- ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) |
46 |
|
mulsub |
|- ( ( ( N e. CC /\ K e. CC ) /\ ( N e. CC /\ K e. CC ) ) -> ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) ) |
47 |
22 26 22 26 46
|
mp4an |
|- ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) |
48 |
6
|
nn0cni |
|- L e. CC |
49 |
22 26 48
|
subadd2i |
|- ( ( N - K ) = L <-> ( L + K ) = N ) |
50 |
9 49
|
mpbir |
|- ( N - K ) = L |
51 |
50 50
|
oveq12i |
|- ( ( N - K ) x. ( N - K ) ) = ( L x. L ) |
52 |
47 51
|
eqtr3i |
|- ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( L x. L ) |
53 |
45 52
|
eqtr3i |
|- ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( L x. L ) |
54 |
29 33 53
|
3eqtr2i |
|- ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( L x. L ) |
55 |
13 1 2 21 6 5 7 8 54
|
mod2xi |
|- ( ( A ^ E ) mod N ) = ( M mod N ) |