| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mod2xnegi.1 |  |-  A e. NN | 
						
							| 2 |  | mod2xnegi.2 |  |-  B e. NN0 | 
						
							| 3 |  | mod2xnegi.3 |  |-  D e. ZZ | 
						
							| 4 |  | mod2xnegi.4 |  |-  K e. NN | 
						
							| 5 |  | mod2xnegi.5 |  |-  M e. NN0 | 
						
							| 6 |  | mod2xnegi.6 |  |-  L e. NN0 | 
						
							| 7 |  | mod2xnegi.10 |  |-  ( ( A ^ B ) mod N ) = ( L mod N ) | 
						
							| 8 |  | mod2xnegi.7 |  |-  ( 2 x. B ) = E | 
						
							| 9 |  | mod2xnegi.8 |  |-  ( L + K ) = N | 
						
							| 10 |  | mod2xnegi.9 |  |-  ( ( D x. N ) + M ) = ( K x. K ) | 
						
							| 11 |  | nn0nnaddcl |  |-  ( ( L e. NN0 /\ K e. NN ) -> ( L + K ) e. NN ) | 
						
							| 12 | 6 4 11 | mp2an |  |-  ( L + K ) e. NN | 
						
							| 13 | 9 12 | eqeltrri |  |-  N e. NN | 
						
							| 14 | 13 | nnzi |  |-  N e. ZZ | 
						
							| 15 |  | zaddcl |  |-  ( ( N e. ZZ /\ D e. ZZ ) -> ( N + D ) e. ZZ ) | 
						
							| 16 | 14 3 15 | mp2an |  |-  ( N + D ) e. ZZ | 
						
							| 17 | 4 | nnnn0i |  |-  K e. NN0 | 
						
							| 18 | 17 17 | nn0addcli |  |-  ( K + K ) e. NN0 | 
						
							| 19 | 18 | nn0zi |  |-  ( K + K ) e. ZZ | 
						
							| 20 |  | zsubcl |  |-  ( ( ( N + D ) e. ZZ /\ ( K + K ) e. ZZ ) -> ( ( N + D ) - ( K + K ) ) e. ZZ ) | 
						
							| 21 | 16 19 20 | mp2an |  |-  ( ( N + D ) - ( K + K ) ) e. ZZ | 
						
							| 22 | 13 | nncni |  |-  N e. CC | 
						
							| 23 |  | zcn |  |-  ( D e. ZZ -> D e. CC ) | 
						
							| 24 | 3 23 | ax-mp |  |-  D e. CC | 
						
							| 25 | 22 24 | addcli |  |-  ( N + D ) e. CC | 
						
							| 26 | 4 | nncni |  |-  K e. CC | 
						
							| 27 | 26 26 | addcli |  |-  ( K + K ) e. CC | 
						
							| 28 | 25 27 22 | subdiri |  |-  ( ( ( N + D ) - ( K + K ) ) x. N ) = ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) | 
						
							| 29 | 28 | oveq1i |  |-  ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) | 
						
							| 30 | 25 22 | mulcli |  |-  ( ( N + D ) x. N ) e. CC | 
						
							| 31 | 5 | nn0cni |  |-  M e. CC | 
						
							| 32 | 27 22 | mulcli |  |-  ( ( K + K ) x. N ) e. CC | 
						
							| 33 | 30 31 32 | addsubi |  |-  ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( ( ( ( N + D ) x. N ) - ( ( K + K ) x. N ) ) + M ) | 
						
							| 34 | 10 | oveq2i |  |-  ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( N x. N ) + ( K x. K ) ) | 
						
							| 35 | 22 26 26 | adddii |  |-  ( N x. ( K + K ) ) = ( ( N x. K ) + ( N x. K ) ) | 
						
							| 36 | 34 35 | oveq12i |  |-  ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) | 
						
							| 37 | 22 24 22 | adddiri |  |-  ( ( N + D ) x. N ) = ( ( N x. N ) + ( D x. N ) ) | 
						
							| 38 | 37 | oveq1i |  |-  ( ( ( N + D ) x. N ) + M ) = ( ( ( N x. N ) + ( D x. N ) ) + M ) | 
						
							| 39 | 22 22 | mulcli |  |-  ( N x. N ) e. CC | 
						
							| 40 | 24 22 | mulcli |  |-  ( D x. N ) e. CC | 
						
							| 41 | 39 40 31 | addassi |  |-  ( ( ( N x. N ) + ( D x. N ) ) + M ) = ( ( N x. N ) + ( ( D x. N ) + M ) ) | 
						
							| 42 | 38 41 | eqtr2i |  |-  ( ( N x. N ) + ( ( D x. N ) + M ) ) = ( ( ( N + D ) x. N ) + M ) | 
						
							| 43 | 22 27 | mulcomi |  |-  ( N x. ( K + K ) ) = ( ( K + K ) x. N ) | 
						
							| 44 | 42 43 | oveq12i |  |-  ( ( ( N x. N ) + ( ( D x. N ) + M ) ) - ( N x. ( K + K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) | 
						
							| 45 | 36 44 | eqtr3i |  |-  ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) | 
						
							| 46 |  | mulsub |  |-  ( ( ( N e. CC /\ K e. CC ) /\ ( N e. CC /\ K e. CC ) ) -> ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) ) | 
						
							| 47 | 22 26 22 26 46 | mp4an |  |-  ( ( N - K ) x. ( N - K ) ) = ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) | 
						
							| 48 | 6 | nn0cni |  |-  L e. CC | 
						
							| 49 | 22 26 48 | subadd2i |  |-  ( ( N - K ) = L <-> ( L + K ) = N ) | 
						
							| 50 | 9 49 | mpbir |  |-  ( N - K ) = L | 
						
							| 51 | 50 50 | oveq12i |  |-  ( ( N - K ) x. ( N - K ) ) = ( L x. L ) | 
						
							| 52 | 47 51 | eqtr3i |  |-  ( ( ( N x. N ) + ( K x. K ) ) - ( ( N x. K ) + ( N x. K ) ) ) = ( L x. L ) | 
						
							| 53 | 45 52 | eqtr3i |  |-  ( ( ( ( N + D ) x. N ) + M ) - ( ( K + K ) x. N ) ) = ( L x. L ) | 
						
							| 54 | 29 33 53 | 3eqtr2i |  |-  ( ( ( ( N + D ) - ( K + K ) ) x. N ) + M ) = ( L x. L ) | 
						
							| 55 | 13 1 2 21 6 5 7 8 54 | mod2xi |  |-  ( ( A ^ E ) mod N ) = ( M mod N ) |