Step |
Hyp |
Ref |
Expression |
1 |
|
modcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
2 |
1
|
anim1i |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A mod B ) e. RR /\ C e. RR+ ) ) |
3 |
2
|
3impa |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> ( ( A mod B ) e. RR /\ C e. RR+ ) ) |
4 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> ( ( A mod B ) e. RR /\ C e. RR+ ) ) |
5 |
|
modge0 |
|- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> 0 <_ ( A mod B ) ) |
7 |
6
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> 0 <_ ( A mod B ) ) |
8 |
1
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> ( A mod B ) e. RR ) |
9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> ( A mod B ) e. RR ) |
10 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> B e. RR ) |
12 |
11
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> B e. RR ) |
13 |
|
rpre |
|- ( C e. RR+ -> C e. RR ) |
14 |
13
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> C e. RR ) |
15 |
14
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> C e. RR ) |
16 |
|
modlt |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
17 |
16
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) -> ( A mod B ) < B ) |
18 |
17
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> ( A mod B ) < B ) |
19 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> B <_ C ) |
20 |
9 12 15 18 19
|
ltletrd |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> ( A mod B ) < C ) |
21 |
|
modid |
|- ( ( ( ( A mod B ) e. RR /\ C e. RR+ ) /\ ( 0 <_ ( A mod B ) /\ ( A mod B ) < C ) ) -> ( ( A mod B ) mod C ) = ( A mod B ) ) |
22 |
4 7 20 21
|
syl12anc |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR+ ) /\ B <_ C ) -> ( ( A mod B ) mod C ) = ( A mod B ) ) |