Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
2 |
1
|
leidd |
|- ( B e. RR+ -> B <_ B ) |
3 |
2
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B <_ B ) |
4 |
|
modabs |
|- ( ( ( A e. RR /\ B e. RR+ /\ B e. RR+ ) /\ B <_ B ) -> ( ( A mod B ) mod B ) = ( A mod B ) ) |
5 |
4
|
ex |
|- ( ( A e. RR /\ B e. RR+ /\ B e. RR+ ) -> ( B <_ B -> ( ( A mod B ) mod B ) = ( A mod B ) ) ) |
6 |
5
|
3anidm23 |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B <_ B -> ( ( A mod B ) mod B ) = ( A mod B ) ) ) |
7 |
3 6
|
mpd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) mod B ) = ( A mod B ) ) |