Step |
Hyp |
Ref |
Expression |
1 |
|
modadd12d.1 |
|- ( ph -> A e. RR ) |
2 |
|
modadd12d.2 |
|- ( ph -> B e. RR ) |
3 |
|
modadd12d.3 |
|- ( ph -> C e. RR ) |
4 |
|
modadd12d.4 |
|- ( ph -> D e. RR ) |
5 |
|
modadd12d.5 |
|- ( ph -> E e. RR+ ) |
6 |
|
modadd12d.6 |
|- ( ph -> ( A mod E ) = ( B mod E ) ) |
7 |
|
modadd12d.7 |
|- ( ph -> ( C mod E ) = ( D mod E ) ) |
8 |
|
modadd1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
9 |
1 2 3 5 6 8
|
syl221anc |
|- ( ph -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) |
10 |
2
|
recnd |
|- ( ph -> B e. CC ) |
11 |
3
|
recnd |
|- ( ph -> C e. CC ) |
12 |
10 11
|
addcomd |
|- ( ph -> ( B + C ) = ( C + B ) ) |
13 |
12
|
oveq1d |
|- ( ph -> ( ( B + C ) mod E ) = ( ( C + B ) mod E ) ) |
14 |
|
modadd1 |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. RR /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
15 |
3 4 2 5 7 14
|
syl221anc |
|- ( ph -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) |
16 |
4
|
recnd |
|- ( ph -> D e. CC ) |
17 |
16 10
|
addcomd |
|- ( ph -> ( D + B ) = ( B + D ) ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( D + B ) mod E ) = ( ( B + D ) mod E ) ) |
19 |
13 15 18
|
3eqtrd |
|- ( ph -> ( ( B + C ) mod E ) = ( ( B + D ) mod E ) ) |
20 |
9 19
|
eqtrd |
|- ( ph -> ( ( A + C ) mod E ) = ( ( B + D ) mod E ) ) |