| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modadd12d.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | modadd12d.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | modadd12d.3 |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | modadd12d.4 |  |-  ( ph -> D e. RR ) | 
						
							| 5 |  | modadd12d.5 |  |-  ( ph -> E e. RR+ ) | 
						
							| 6 |  | modadd12d.6 |  |-  ( ph -> ( A mod E ) = ( B mod E ) ) | 
						
							| 7 |  | modadd12d.7 |  |-  ( ph -> ( C mod E ) = ( D mod E ) ) | 
						
							| 8 |  | modadd1 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) | 
						
							| 9 | 1 2 3 5 6 8 | syl221anc |  |-  ( ph -> ( ( A + C ) mod E ) = ( ( B + C ) mod E ) ) | 
						
							| 10 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 11 | 3 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 12 | 10 11 | addcomd |  |-  ( ph -> ( B + C ) = ( C + B ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ph -> ( ( B + C ) mod E ) = ( ( C + B ) mod E ) ) | 
						
							| 14 |  | modadd1 |  |-  ( ( ( C e. RR /\ D e. RR ) /\ ( B e. RR /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) | 
						
							| 15 | 3 4 2 5 7 14 | syl221anc |  |-  ( ph -> ( ( C + B ) mod E ) = ( ( D + B ) mod E ) ) | 
						
							| 16 | 4 | recnd |  |-  ( ph -> D e. CC ) | 
						
							| 17 | 16 10 | addcomd |  |-  ( ph -> ( D + B ) = ( B + D ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ph -> ( ( D + B ) mod E ) = ( ( B + D ) mod E ) ) | 
						
							| 19 | 13 15 18 | 3eqtrd |  |-  ( ph -> ( ( B + C ) mod E ) = ( ( B + D ) mod E ) ) | 
						
							| 20 | 9 19 | eqtrd |  |-  ( ph -> ( ( A + C ) mod E ) = ( ( B + D ) mod E ) ) |