| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> B e. CC ) | 
						
							| 3 |  | modcl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 4 | 3 | recnd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) | 
						
							| 6 | 2 5 | addcomd |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( B + ( A mod M ) ) = ( ( A mod M ) + B ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( ( A mod M ) + B ) mod M ) ) | 
						
							| 8 |  | modaddmod |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + B ) mod M ) = ( ( A + B ) mod M ) ) | 
						
							| 9 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 10 |  | addcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) | 
						
							| 11 | 9 1 10 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) mod M ) = ( ( B + A ) mod M ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A + B ) mod M ) = ( ( B + A ) mod M ) ) | 
						
							| 14 | 7 8 13 | 3eqtrd |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( B + ( A mod M ) ) mod M ) = ( ( B + A ) mod M ) ) |