| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modcl |  |-  ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) | 
						
							| 3 | 2 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) | 
						
							| 4 |  | modcl |  |-  ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) | 
						
							| 7 | 3 6 | addcomd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + ( B mod C ) ) = ( ( B mod C ) + ( A mod C ) ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( ( B mod C ) + ( A mod C ) ) mod C ) ) | 
						
							| 9 |  | simpl |  |-  ( ( B e. RR /\ C e. RR+ ) -> B e. RR ) | 
						
							| 10 | 4 9 | jca |  |-  ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) | 
						
							| 11 | 10 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. RR /\ C e. RR+ ) -> C e. RR+ ) | 
						
							| 13 | 1 12 | jca |  |-  ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) | 
						
							| 14 | 13 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) | 
						
							| 15 |  | modabs2 |  |-  ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) | 
						
							| 16 | 15 | 3adant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) | 
						
							| 17 |  | modadd1 |  |-  ( ( ( ( B mod C ) e. RR /\ B e. RR ) /\ ( ( A mod C ) e. RR /\ C e. RR+ ) /\ ( ( B mod C ) mod C ) = ( B mod C ) ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) | 
						
							| 18 | 11 14 16 17 | syl3anc |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) | 
						
							| 19 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 20 | 19 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> B e. CC ) | 
						
							| 21 | 3 20 | addcomd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + B ) = ( B + ( A mod C ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) | 
						
							| 23 | 18 22 | eqtr4d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( ( A mod C ) + B ) mod C ) ) | 
						
							| 24 |  | simpl |  |-  ( ( A e. RR /\ C e. RR+ ) -> A e. RR ) | 
						
							| 25 | 1 24 | jca |  |-  ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) | 
						
							| 26 | 25 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) | 
						
							| 27 |  | 3simpc |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B e. RR /\ C e. RR+ ) ) | 
						
							| 28 |  | modabs2 |  |-  ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) | 
						
							| 29 | 28 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) | 
						
							| 30 |  | modadd1 |  |-  ( ( ( ( A mod C ) e. RR /\ A e. RR ) /\ ( B e. RR /\ C e. RR+ ) /\ ( ( A mod C ) mod C ) = ( A mod C ) ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) | 
						
							| 31 | 26 27 29 30 | syl3anc |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) | 
						
							| 32 | 8 23 31 | 3eqtrd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( A + B ) mod C ) ) |