Step |
Hyp |
Ref |
Expression |
1 |
|
modcl |
|- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. RR ) |
2 |
1
|
recnd |
|- ( ( A e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
3 |
2
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( A mod C ) e. CC ) |
4 |
|
modcl |
|- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. RR ) |
5 |
4
|
recnd |
|- ( ( B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
6 |
5
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B mod C ) e. CC ) |
7 |
3 6
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + ( B mod C ) ) = ( ( B mod C ) + ( A mod C ) ) ) |
8 |
7
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( ( B mod C ) + ( A mod C ) ) mod C ) ) |
9 |
|
simpl |
|- ( ( B e. RR /\ C e. RR+ ) -> B e. RR ) |
10 |
4 9
|
jca |
|- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
11 |
10
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) e. RR /\ B e. RR ) ) |
12 |
|
simpr |
|- ( ( A e. RR /\ C e. RR+ ) -> C e. RR+ ) |
13 |
1 12
|
jca |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
14 |
13
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ C e. RR+ ) ) |
15 |
|
modabs2 |
|- ( ( B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
16 |
15
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( B mod C ) mod C ) = ( B mod C ) ) |
17 |
|
modadd1 |
|- ( ( ( ( B mod C ) e. RR /\ B e. RR ) /\ ( ( A mod C ) e. RR /\ C e. RR+ ) /\ ( ( B mod C ) mod C ) = ( B mod C ) ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
18 |
11 14 16 17
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
19 |
|
recn |
|- ( B e. RR -> B e. CC ) |
20 |
19
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> B e. CC ) |
21 |
3 20
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) + B ) = ( B + ( A mod C ) ) ) |
22 |
21
|
oveq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( B + ( A mod C ) ) mod C ) ) |
23 |
18 22
|
eqtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( B mod C ) + ( A mod C ) ) mod C ) = ( ( ( A mod C ) + B ) mod C ) ) |
24 |
|
simpl |
|- ( ( A e. RR /\ C e. RR+ ) -> A e. RR ) |
25 |
1 24
|
jca |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
26 |
25
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) e. RR /\ A e. RR ) ) |
27 |
|
3simpc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( B e. RR /\ C e. RR+ ) ) |
28 |
|
modabs2 |
|- ( ( A e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
29 |
28
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( A mod C ) mod C ) = ( A mod C ) ) |
30 |
|
modadd1 |
|- ( ( ( ( A mod C ) e. RR /\ A e. RR ) /\ ( B e. RR /\ C e. RR+ ) /\ ( ( A mod C ) mod C ) = ( A mod C ) ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
31 |
26 27 29 30
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + B ) mod C ) = ( ( A + B ) mod C ) ) |
32 |
8 23 31
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR+ ) -> ( ( ( A mod C ) + ( B mod C ) ) mod C ) = ( ( A + B ) mod C ) ) |