| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modcl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
| 2 |
|
simpl |
|- ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) |
| 3 |
1 2
|
jca |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) |
| 4 |
3
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) |
| 5 |
|
3simpc |
|- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( B e. RR /\ M e. RR+ ) ) |
| 6 |
|
modabs2 |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
| 7 |
6
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) |
| 8 |
|
modadd1 |
|- ( ( ( ( A mod M ) e. RR /\ A e. RR ) /\ ( B e. RR /\ M e. RR+ ) /\ ( ( A mod M ) mod M ) = ( A mod M ) ) -> ( ( ( A mod M ) + B ) mod M ) = ( ( A + B ) mod M ) ) |
| 9 |
4 5 7 8
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + B ) mod M ) = ( ( A + B ) mod M ) ) |