| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 2 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
| 3 |
2
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 4 |
|
refldivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
| 5 |
3 4
|
remulcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. RR ) |
| 6 |
|
resubcl |
|- ( ( A e. RR /\ ( B x. ( |_ ` ( A / B ) ) ) e. RR ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. RR ) |
| 7 |
5 6
|
syldan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. RR ) |
| 8 |
1 7
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |