Metamath Proof Explorer


Theorem modcld

Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses modcld.1
|- ( ph -> A e. RR )
modcld.2
|- ( ph -> B e. RR+ )
Assertion modcld
|- ( ph -> ( A mod B ) e. RR )

Proof

Step Hyp Ref Expression
1 modcld.1
 |-  ( ph -> A e. RR )
2 modcld.2
 |-  ( ph -> B e. RR+ )
3 modcl
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A mod B ) e. RR )