Description: The modulo operation differs from A by an integer multiple of B . (Contributed by Mario Carneiro, 15-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | moddifz | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moddiffl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |
|
2 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
3 | 2 | flcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
4 | 1 3 | eqeltrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) e. ZZ ) |