Metamath Proof Explorer


Theorem moddifz

Description: The modulo operation differs from A by an integer multiple of B . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Assertion moddifz
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) e. ZZ )

Proof

Step Hyp Ref Expression
1 moddiffl
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) )
2 rerpdivcl
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR )
3 2 flcld
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ )
4 1 3 eqeltrd
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) e. ZZ )