| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 2 |
1
|
adantr |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> N e. RR+ ) |
| 3 |
|
0mod |
|- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
| 4 |
2 3
|
syl |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( 0 mod N ) = 0 ) |
| 5 |
4
|
eqeq2d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) <-> ( ( A - B ) mod N ) = 0 ) ) |
| 6 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 7 |
6
|
ad2antrl |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> A e. RR ) |
| 8 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
| 9 |
8
|
ad2antll |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. RR ) |
| 10 |
9
|
renegcld |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> -u B e. RR ) |
| 11 |
|
modadd1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( -u B e. RR /\ N e. RR+ ) /\ ( A mod N ) = ( B mod N ) ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) |
| 12 |
11
|
3expia |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( -u B e. RR /\ N e. RR+ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) ) |
| 13 |
7 9 10 2 12
|
syl22anc |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) ) ) |
| 14 |
7
|
recnd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> A e. CC ) |
| 15 |
9
|
recnd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. CC ) |
| 16 |
14 15
|
negsubd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( A + -u B ) = ( A - B ) ) |
| 17 |
16
|
oveq1d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A + -u B ) mod N ) = ( ( A - B ) mod N ) ) |
| 18 |
15
|
negidd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( B + -u B ) = 0 ) |
| 19 |
18
|
oveq1d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( B + -u B ) mod N ) = ( 0 mod N ) ) |
| 20 |
17 19
|
eqeq12d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A + -u B ) mod N ) = ( ( B + -u B ) mod N ) <-> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 21 |
13 20
|
sylibd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) -> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 22 |
7 9
|
resubcld |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( A - B ) e. RR ) |
| 23 |
|
0red |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> 0 e. RR ) |
| 24 |
|
modadd1 |
|- ( ( ( ( A - B ) e. RR /\ 0 e. RR ) /\ ( B e. RR /\ N e. RR+ ) /\ ( ( A - B ) mod N ) = ( 0 mod N ) ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) |
| 25 |
24
|
3expia |
|- ( ( ( ( A - B ) e. RR /\ 0 e. RR ) /\ ( B e. RR /\ N e. RR+ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) ) |
| 26 |
22 23 9 2 25
|
syl22anc |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) ) ) |
| 27 |
14 15
|
npcand |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A - B ) + B ) = A ) |
| 28 |
27
|
oveq1d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) + B ) mod N ) = ( A mod N ) ) |
| 29 |
15
|
addlidd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( 0 + B ) = B ) |
| 30 |
29
|
oveq1d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( 0 + B ) mod N ) = ( B mod N ) ) |
| 31 |
28 30
|
eqeq12d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( ( A - B ) + B ) mod N ) = ( ( 0 + B ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
| 32 |
26 31
|
sylibd |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( ( A - B ) mod N ) = ( 0 mod N ) -> ( A mod N ) = ( B mod N ) ) ) |
| 33 |
21 32
|
impbid |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) <-> ( ( A - B ) mod N ) = ( 0 mod N ) ) ) |
| 34 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
| 35 |
|
dvdsval3 |
|- ( ( N e. NN /\ ( A - B ) e. ZZ ) -> ( N || ( A - B ) <-> ( ( A - B ) mod N ) = 0 ) ) |
| 36 |
34 35
|
sylan2 |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( N || ( A - B ) <-> ( ( A - B ) mod N ) = 0 ) ) |
| 37 |
5 33 36
|
3bitr4d |
|- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( ( A mod N ) = ( B mod N ) <-> N || ( A - B ) ) ) |
| 38 |
37
|
3impb |
|- ( ( N e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod N ) = ( B mod N ) <-> N || ( A - B ) ) ) |