Step |
Hyp |
Ref |
Expression |
1 |
|
modcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
2 |
|
modge0 |
|- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
3 |
|
modlt |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
rpxr |
|- ( B e. RR+ -> B e. RR* ) |
6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR* ) |
7 |
|
elico2 |
|- ( ( 0 e. RR /\ B e. RR* ) -> ( ( A mod B ) e. ( 0 [,) B ) <-> ( ( A mod B ) e. RR /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
8 |
4 6 7
|
sylancr |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) e. ( 0 [,) B ) <-> ( ( A mod B ) e. RR /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
9 |
1 2 3 8
|
mpbir3and |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. ( 0 [,) B ) ) |