| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modid0 |  |-  ( M e. RR+ -> ( M mod M ) = 0 ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) = 0 ) | 
						
							| 3 |  | modge0 |  |-  ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( A mod M ) ) | 
						
							| 4 | 2 3 | eqbrtrd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) <_ ( A mod M ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) | 
						
							| 6 |  | rpre |  |-  ( M e. RR+ -> M e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. RR /\ M e. RR+ ) -> M e. RR ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. RR /\ M e. RR+ ) -> M e. RR+ ) | 
						
							| 9 |  | modsubdir |  |-  ( ( A e. RR /\ M e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) | 
						
							| 10 | 5 7 8 9 | syl3anc |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) | 
						
							| 11 | 4 10 | mpbid |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) | 
						
							| 12 | 2 | eqcomd |  |-  ( ( A e. RR /\ M e. RR+ ) -> 0 = ( M mod M ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( ( A mod M ) - ( M mod M ) ) ) | 
						
							| 14 |  | modcl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) | 
						
							| 16 | 15 | subid1d |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( A mod M ) ) | 
						
							| 17 | 11 13 16 | 3eqtr2rd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) = ( ( A - M ) mod M ) ) |