Step |
Hyp |
Ref |
Expression |
1 |
|
modid0 |
|- ( M e. RR+ -> ( M mod M ) = 0 ) |
2 |
1
|
adantl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) = 0 ) |
3 |
|
modge0 |
|- ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( A mod M ) ) |
4 |
2 3
|
eqbrtrd |
|- ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) <_ ( A mod M ) ) |
5 |
|
simpl |
|- ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) |
6 |
|
rpre |
|- ( M e. RR+ -> M e. RR ) |
7 |
6
|
adantl |
|- ( ( A e. RR /\ M e. RR+ ) -> M e. RR ) |
8 |
|
simpr |
|- ( ( A e. RR /\ M e. RR+ ) -> M e. RR+ ) |
9 |
|
modsubdir |
|- ( ( A e. RR /\ M e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) |
10 |
5 7 8 9
|
syl3anc |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) |
11 |
4 10
|
mpbid |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) |
12 |
2
|
eqcomd |
|- ( ( A e. RR /\ M e. RR+ ) -> 0 = ( M mod M ) ) |
13 |
12
|
oveq2d |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( ( A mod M ) - ( M mod M ) ) ) |
14 |
|
modcl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
15 |
14
|
recnd |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
16 |
15
|
subid1d |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( A mod M ) ) |
17 |
11 13 16
|
3eqtr2rd |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) = ( ( A - M ) mod M ) ) |