Step |
Hyp |
Ref |
Expression |
1 |
|
simp2l |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> C e. NN0 ) |
2 |
|
id |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) ) |
3 |
2
|
3adant2l |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) ) |
4 |
|
oveq2 |
|- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
5 |
4
|
oveq1d |
|- ( x = 0 -> ( ( A ^ x ) mod D ) = ( ( A ^ 0 ) mod D ) ) |
6 |
|
oveq2 |
|- ( x = 0 -> ( B ^ x ) = ( B ^ 0 ) ) |
7 |
6
|
oveq1d |
|- ( x = 0 -> ( ( B ^ x ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
8 |
5 7
|
eqeq12d |
|- ( x = 0 -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) ) |
9 |
8
|
imbi2d |
|- ( x = 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) ) ) |
10 |
|
oveq2 |
|- ( x = k -> ( A ^ x ) = ( A ^ k ) ) |
11 |
10
|
oveq1d |
|- ( x = k -> ( ( A ^ x ) mod D ) = ( ( A ^ k ) mod D ) ) |
12 |
|
oveq2 |
|- ( x = k -> ( B ^ x ) = ( B ^ k ) ) |
13 |
12
|
oveq1d |
|- ( x = k -> ( ( B ^ x ) mod D ) = ( ( B ^ k ) mod D ) ) |
14 |
11 13
|
eqeq12d |
|- ( x = k -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) ) |
15 |
14
|
imbi2d |
|- ( x = k -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) ) ) |
16 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( A ^ x ) = ( A ^ ( k + 1 ) ) ) |
17 |
16
|
oveq1d |
|- ( x = ( k + 1 ) -> ( ( A ^ x ) mod D ) = ( ( A ^ ( k + 1 ) ) mod D ) ) |
18 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( B ^ x ) = ( B ^ ( k + 1 ) ) ) |
19 |
18
|
oveq1d |
|- ( x = ( k + 1 ) -> ( ( B ^ x ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) |
20 |
17 19
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) |
21 |
20
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
22 |
|
oveq2 |
|- ( x = C -> ( A ^ x ) = ( A ^ C ) ) |
23 |
22
|
oveq1d |
|- ( x = C -> ( ( A ^ x ) mod D ) = ( ( A ^ C ) mod D ) ) |
24 |
|
oveq2 |
|- ( x = C -> ( B ^ x ) = ( B ^ C ) ) |
25 |
24
|
oveq1d |
|- ( x = C -> ( ( B ^ x ) mod D ) = ( ( B ^ C ) mod D ) ) |
26 |
23 25
|
eqeq12d |
|- ( x = C -> ( ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) <-> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) |
27 |
26
|
imbi2d |
|- ( x = C -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ x ) mod D ) = ( ( B ^ x ) mod D ) ) <-> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) ) |
28 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
29 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
30 |
28 29
|
syl |
|- ( A e. ZZ -> ( A ^ 0 ) = 1 ) |
31 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
32 |
|
exp0 |
|- ( B e. CC -> ( B ^ 0 ) = 1 ) |
33 |
31 32
|
syl |
|- ( B e. ZZ -> ( B ^ 0 ) = 1 ) |
34 |
33
|
eqcomd |
|- ( B e. ZZ -> 1 = ( B ^ 0 ) ) |
35 |
30 34
|
sylan9eq |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A ^ 0 ) = ( B ^ 0 ) ) |
36 |
35
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ 0 ) mod D ) = ( ( B ^ 0 ) mod D ) ) |
38 |
|
simp21l |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> A e. ZZ ) |
39 |
|
simp1 |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> k e. NN0 ) |
40 |
|
zexpcl |
|- ( ( A e. ZZ /\ k e. NN0 ) -> ( A ^ k ) e. ZZ ) |
41 |
38 39 40
|
syl2anc |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A ^ k ) e. ZZ ) |
42 |
|
simp21r |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> B e. ZZ ) |
43 |
|
zexpcl |
|- ( ( B e. ZZ /\ k e. NN0 ) -> ( B ^ k ) e. ZZ ) |
44 |
42 39 43
|
syl2anc |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( B ^ k ) e. ZZ ) |
45 |
|
simp22 |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> D e. RR+ ) |
46 |
|
simp3 |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) |
47 |
|
simp23 |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A mod D ) = ( B mod D ) ) |
48 |
41 44 38 42 45 46 47
|
modmul12d |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( ( A ^ k ) x. A ) mod D ) = ( ( ( B ^ k ) x. B ) mod D ) ) |
49 |
38
|
zcnd |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> A e. CC ) |
50 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
51 |
49 39 50
|
syl2anc |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
52 |
51
|
oveq1d |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( ( A ^ k ) x. A ) mod D ) ) |
53 |
42
|
zcnd |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> B e. CC ) |
54 |
|
expp1 |
|- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
55 |
53 39 54
|
syl2anc |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
56 |
55
|
oveq1d |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( B ^ ( k + 1 ) ) mod D ) = ( ( ( B ^ k ) x. B ) mod D ) ) |
57 |
48 52 56
|
3eqtr4d |
|- ( ( k e. NN0 /\ ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) /\ ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) |
58 |
57
|
3exp |
|- ( k e. NN0 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
59 |
58
|
a2d |
|- ( k e. NN0 -> ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ k ) mod D ) = ( ( B ^ k ) mod D ) ) -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ ( k + 1 ) ) mod D ) = ( ( B ^ ( k + 1 ) ) mod D ) ) ) ) |
60 |
9 15 21 27 37 59
|
nn0ind |
|- ( C e. NN0 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ D e. RR+ /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) ) |
61 |
1 3 60
|
sylc |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A ^ C ) mod D ) = ( ( B ^ C ) mod D ) ) |