| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1rp |
|- 1 e. RR+ |
| 2 |
|
modval |
|- ( ( A e. RR /\ 1 e. RR+ ) -> ( A mod 1 ) = ( A - ( 1 x. ( |_ ` ( A / 1 ) ) ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( A mod 1 ) = ( A - ( 1 x. ( |_ ` ( A / 1 ) ) ) ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
4
|
div1d |
|- ( A e. RR -> ( A / 1 ) = A ) |
| 6 |
5
|
fveq2d |
|- ( A e. RR -> ( |_ ` ( A / 1 ) ) = ( |_ ` A ) ) |
| 7 |
6
|
oveq2d |
|- ( A e. RR -> ( 1 x. ( |_ ` ( A / 1 ) ) ) = ( 1 x. ( |_ ` A ) ) ) |
| 8 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 9 |
8
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
| 10 |
9
|
mullidd |
|- ( A e. RR -> ( 1 x. ( |_ ` A ) ) = ( |_ ` A ) ) |
| 11 |
7 10
|
eqtrd |
|- ( A e. RR -> ( 1 x. ( |_ ` ( A / 1 ) ) ) = ( |_ ` A ) ) |
| 12 |
11
|
oveq2d |
|- ( A e. RR -> ( A - ( 1 x. ( |_ ` ( A / 1 ) ) ) ) = ( A - ( |_ ` A ) ) ) |
| 13 |
3 12
|
eqtrd |
|- ( A e. RR -> ( A mod 1 ) = ( A - ( |_ ` A ) ) ) |