Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
2 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
3 |
|
modval |
|- ( ( M e. RR /\ N e. RR+ ) -> ( M mod N ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
5 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
6 |
5
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
7 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
8 |
7
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
9 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
10 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
11 |
|
redivcl |
|- ( ( M e. RR /\ N e. RR /\ N =/= 0 ) -> ( M / N ) e. RR ) |
12 |
1 9 10 11
|
syl3an |
|- ( ( M e. ZZ /\ N e. NN /\ N e. NN ) -> ( M / N ) e. RR ) |
13 |
12
|
3anidm23 |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
14 |
13
|
flcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
15 |
14
|
zcnd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. CC ) |
16 |
|
mulneg1 |
|- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( ( |_ ` ( M / N ) ) x. N ) ) |
17 |
|
mulcom |
|- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( ( |_ ` ( M / N ) ) x. N ) = ( N x. ( |_ ` ( M / N ) ) ) ) |
18 |
17
|
negeqd |
|- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> -u ( ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
19 |
16 18
|
eqtrd |
|- ( ( ( |_ ` ( M / N ) ) e. CC /\ N e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
20 |
19
|
ancoms |
|- ( ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
21 |
20
|
3adant1 |
|- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( -u ( |_ ` ( M / N ) ) x. N ) = -u ( N x. ( |_ ` ( M / N ) ) ) ) |
22 |
21
|
oveq2d |
|- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) ) |
23 |
|
mulcl |
|- ( ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( N x. ( |_ ` ( M / N ) ) ) e. CC ) |
24 |
|
negsub |
|- ( ( M e. CC /\ ( N x. ( |_ ` ( M / N ) ) ) e. CC ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
25 |
23 24
|
sylan2 |
|- ( ( M e. CC /\ ( N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
26 |
25
|
3impb |
|- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + -u ( N x. ( |_ ` ( M / N ) ) ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
27 |
22 26
|
eqtrd |
|- ( ( M e. CC /\ N e. CC /\ ( |_ ` ( M / N ) ) e. CC ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
28 |
6 8 15 27
|
syl3anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) = ( M - ( N x. ( |_ ` ( M / N ) ) ) ) ) |
29 |
4 28
|
eqtr4d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) = ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) |
30 |
29
|
oveq2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
31 |
14
|
znegcld |
|- ( ( M e. ZZ /\ N e. NN ) -> -u ( |_ ` ( M / N ) ) e. ZZ ) |
32 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
33 |
32
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. ZZ ) |
34 |
|
simpl |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. ZZ ) |
35 |
|
gcdaddm |
|- ( ( -u ( |_ ` ( M / N ) ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
36 |
31 33 34 35
|
syl3anc |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( N gcd ( M + ( -u ( |_ ` ( M / N ) ) x. N ) ) ) ) |
37 |
30 36
|
eqtr4d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( N gcd M ) ) |
38 |
|
zmodcl |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) e. NN0 ) |
39 |
38
|
nn0zd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M mod N ) e. ZZ ) |
40 |
33 39
|
gcdcomd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd ( M mod N ) ) = ( ( M mod N ) gcd N ) ) |
41 |
33 34
|
gcdcomd |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( M gcd N ) ) |
42 |
37 40 41
|
3eqtr3d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) gcd N ) = ( M gcd N ) ) |