Step |
Hyp |
Ref |
Expression |
1 |
|
modge0 |
|- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
2 |
|
modlt |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
3 |
1 2
|
jca |
|- ( ( A e. RR /\ B e. RR+ ) -> ( 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) |
4 |
|
breq2 |
|- ( ( A mod B ) = A -> ( 0 <_ ( A mod B ) <-> 0 <_ A ) ) |
5 |
|
breq1 |
|- ( ( A mod B ) = A -> ( ( A mod B ) < B <-> A < B ) ) |
6 |
4 5
|
anbi12d |
|- ( ( A mod B ) = A -> ( ( 0 <_ ( A mod B ) /\ ( A mod B ) < B ) <-> ( 0 <_ A /\ A < B ) ) ) |
7 |
3 6
|
syl5ibcom |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = A -> ( 0 <_ A /\ A < B ) ) ) |
8 |
|
modid |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ ( 0 <_ A /\ A < B ) ) -> ( A mod B ) = A ) |
9 |
8
|
ex |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( 0 <_ A /\ A < B ) -> ( A mod B ) = A ) ) |
10 |
7 9
|
impbid |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = A <-> ( 0 <_ A /\ A < B ) ) ) |